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Abstract 

Alzheimer‟s disease (AD) is the most widespread and fatal neurodegenerative dementia in the 

recent past. Prominent symptoms of AD include short-term and long-term memory loss, poor 

judgment, abstract thinking, disorientation of time and place, emotional outbreaks etc. AD 

substantially affects elderly persons and the progression of disease becomes worse over time. AD 

starts very slowly and is mostly detected at a later stage where treatment can only improve some 

temporary symptoms but reversal or termination of the progression of disease seems to be 

impossible. AD-related primary cognitive declinement is largely known as mild cognitive 

impairment (MCI) which has a very high tendency to be converted into severe AD as compared 

to healthy control (HC). Hence, the prevention of AD is mostly dependent on diagnosis at a 

trivial stage of MCI. Magnetic resonance imaging (MRI) is regarded as a reliable, non-invasive, 

and most effective tool for the diagnosis of brain diseases over a long time.  This thesis work 

introduces various novel methodologies of analyzing MRI and Rf-MRI (Resting state functional 

MRI) images to develop the tools for detecting AD at an early stage.  

Mild and severe AD is associated with tissue loss in the medial temporal lobe (MTL) and 

hippocampus. MCI can be more accurately identified by precise detection of object boundaries in 

brain MRI scans. Existing edge detection techniques fundamentally select each pixel in digital 

image space and examine whether they can be considered as an edge pixel or not. Proposed 

algorithm follows some other paths and finds out the connectedness and natural attachment of 

pixels that exist in edges of image object boundary. It figures out the connected edge line based 

on fuzzy weights of pixel intensities for brain MRI subjects. A novel fuzzy rule base and fuzzy 

inference system is implemented where a fuzzy pixel intensity-based topological selection of 

adjacent edge pixels is developed for higher-order precision. Since brain MRI scans are generally 

of low contrast, the presented algorithm extracts regional boundaries with more precision which 

becomes capable to predict or check disease progression. The presented method emphasizes on 

settling the primary edge pixel and figures out the next adjacent pixel that can be considered as 

an edge pixel depending on a dynamic fuzzy pixel intensity correlation algorithm. The selected 

edge pixels are further accumulated in the pixel matrix to identify the impression of edge 
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contour. Proposed algorithm leads to tracing early impairment in human brain and helps to detect 

MCI. 

AD, associated with tissue loss in MTL and hippocampus, can be identified by correlated 

enlargement of the lateral ventricle (LV) region. In connection to this, a composite 

implementation of several algorithms is presented which is an improved extractor of LV in a 

form of a segregated entity. A robust morphological filtering process is presented that can 

eliminate noise, focus lateral ventricle and avoid overestimation in object boundary as well. An 

improved fuzzy c-means (FCM) clustering algorithm is successfully employed on test MRI 

images to enhance the lateral ventricle region information. Presented clustering algorithm 

iteratively uses improved FCM to settle for optimum clustering validity index. This process 

minimizes the chance of ventricular information loss and simultaneously avoids overestimation. 

By means of appropriate implementation of active contour without edges (ACWE) and region 

growing (RG) algorithms with proper seed point, the LV is separated as a single and connected 

entity for cerebral cortical atrophy subjects. The presented method exhibits superior ability to 

classify LV both qualitatively and quantitatively. It has subsequently been simulated on a large 

data set of different MRI subjects. The experimental outcomes demonstrate that the executed 

method efficiently segregates HC, MCI and AD subjects. Therefore, the presented technique 

may be used as a viable tool to detect early Alzheimer‟s disease.  

 

Diagnosing brain MRI scans with an advanced FCM clustering algorithm helps to take 

appropriate intervention for tracing out MCI. A novel clustering algorithm is presented where 

firstly the sparsity is initiated for brain MR scans of AD subject. Secondly, a unique neighbor 

pixel constrained FCM clustering algorithm is designed and implemented where a topology-

based selection of parsimonious neighbor pixel is automated. The adaptability in choice of 

neighbor pixel class creates a more justified object edge boundary. The presented adaptive 

neighbor constrained deviation sparse variant fuzzy c-means clustering (AN_DsFCM) can 

withhold imposed sparsity and withstand rician noise. This robust algorithm is applied for MRI 

of AD subjects and normative data is acquired to analyze clustering accuracy. The data 

processing pipeline of a theoretically plausible proposition is elaborated in detail. The 

experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI 

scans. Visual evaluation and statistical measures are studied to meet both image processing and 

clinical neurophysiology standards.  
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Early identification of dementia can be achieved by diagnosis of blood oxygen level dependent 

(BOLD) signal-based functional magnetic resonance imaging (f-MRI) at resting-state. Detection 

of dementia at the stage of MCI is limited to effective spatial-temporal dependency. The 

functional connectivity (FC) among various hubs of human brain estimates neuronal health and 

disease progression. Due to motion-related artifacts at acquisition time, noise intervention, and 

many other reasons, the sparse constraint becomes predominant in Rf-MRI.  A unique Kullback-

Leibler (K-L) divergence-based sparse constrained regression model is presented, which creates 

a framework to identify and analyze connectivity between the hippocampus and other significant 

regions of interest (ROI) of brain. Experimental results demonstrate a promising improvement in 

hippocampus centric connectivity measurements. Outcome of simulated results also appears in 

the form of a whole-brain correlation matrix which shows significant improvement in 

connectivity constraints.  

 

Since the MCI related tissue loss primarily affects MTL and hippocampus, the consequent 

functional connectivity degradation can be observed in Rf-MRI analysis. A three-dimensional 

model for FC analysis between hippocampus and parahippocampus is presented to trace the early 

signs of MCI. The FC between each hippocampal subfields and parahippocampal subfields in 

their entirety is examined. A quadratic detrending algorithm is implemented to model both 

complex scanner drift constraints and longer scan sessions. The noise interventions and motion-

related artifacts and are also well handled by the presented framework. Outcomes in terms of 

correlation matrix demonstrate noticeable efficiency of dealing with functional connectivity 

constraints between hippocampus and parahippocampus. The entire process including full brain 

FC analysis leads to trace MCI related connectivity malfunctions.      
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Abstract 

Alzheimer‟s disease (AD) is the most widespread and fatal neurodegenerative dementia in the 

recent past. Prominent symptoms of AD include short-term and long-term memory loss, poor 

judgment, abstract thinking, disorientation of time and place, emotional outbreaks etc. AD 

substantially affects elderly persons and the progression of disease becomes worse over time. AD 

starts very slowly and is mostly detected at a later stage where treatment can only improve some 

temporary symptoms but reversal or termination of the progression of disease seems to be 

impossible. AD-related primary cognitive declinement is largely known as mild cognitive 

impairment (MCI) which has a very high tendency to be converted into severe AD as compared 

to healthy control (HC). Hence, the prevention of AD is mostly dependent on diagnosis at a 

trivial stage of MCI. Magnetic resonance imaging (MRI) is regarded as a reliable, non-invasive, 

and most effective tool for the diagnosis of brain diseases over a long time.  This thesis work 

introduces various novel methodologies of analyzing MRI and Rf-MRI (Resting state functional 

MRI) images to develop the tools for detecting AD at an early stage.  

Mild and severe AD is associated with tissue loss in the medial temporal lobe (MTL) and 

hippocampus. MCI can be more accurately identified by precise detection of object boundaries in 

brain MRI scans. Existing edge detection techniques fundamentally select each pixel in digital 

image space and examine whether they can be considered as an edge pixel or not. Proposed 

algorithm follows some other paths and finds out the connectedness and natural attachment of 

pixels that exist in edges of image object boundary. It figures out the connected edge line based 

on fuzzy weights of pixel intensities for brain MRI subjects. A novel fuzzy rule base and fuzzy 

inference system is implemented where a fuzzy pixel intensity-based topological selection of 

adjacent edge pixels is developed for higher-order precision. Since brain MRI scans are generally 

of low contrast, the presented algorithm extracts regional boundaries with more precision which 

becomes capable to predict or check disease progression. The presented method emphasizes on 

settling the primary edge pixel and figures out the next adjacent pixel that can be considered as 

an edge pixel depending on a dynamic fuzzy pixel intensity correlation algorithm. The selected 

edge pixels are further accumulated in the pixel matrix to identify the impression of edge 
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contour. Proposed algorithm leads to tracing early impairment in human brain and helps to detect 

MCI. 

AD, associated with tissue loss in MTL and hippocampus, can be identified by correlated 

enlargement of the lateral ventricle (LV) region. In connection to this, a composite 

implementation of several algorithms is presented which is an improved extractor of LV in a 

form of a segregated entity. A robust morphological filtering process is presented that can 

eliminate noise, focus lateral ventricle and avoid overestimation in object boundary as well. An 

improved fuzzy c-means (FCM) clustering algorithm is successfully employed on test MRI 

images to enhance the lateral ventricle region information. Presented clustering algorithm 

iteratively uses improved FCM to settle for optimum clustering validity index. This process 

minimizes the chance of ventricular information loss and simultaneously avoids overestimation. 

By means of appropriate implementation of active contour without edges (ACWE) and region 

growing (RG) algorithms with proper seed point, the LV is separated as a single and connected 

entity for cerebral cortical atrophy subjects. The presented method exhibits superior ability to 

classify LV both qualitatively and quantitatively. It has subsequently been simulated on a large 

data set of different MRI subjects. The experimental outcomes demonstrate that the executed 

method efficiently segregates HC, MCI and AD subjects. Therefore, the presented technique 

may be used as a viable tool to detect early Alzheimer‟s disease.  

 

Diagnosing brain MRI scans with an advanced FCM clustering algorithm helps to take 

appropriate intervention for tracing out MCI. A novel clustering algorithm is presented where 

firstly the sparsity is initiated for brain MR scans of AD subject. Secondly, a unique neighbor 

pixel constrained FCM clustering algorithm is designed and implemented where a topology-

based selection of parsimonious neighbor pixel is automated. The adaptability in choice of 

neighbor pixel class creates a more justified object edge boundary. The presented adaptive 

neighbor constrained deviation sparse variant fuzzy c-means clustering (AN_DsFCM) can 

withhold imposed sparsity and withstand rician noise. This robust algorithm is applied for MRI 

of AD subjects and normative data is acquired to analyze clustering accuracy. The data 

processing pipeline of a theoretically plausible proposition is elaborated in detail. The 

experimental results are compared with state-of-the-art fuzzy clustering methods for test MRI 

scans. Visual evaluation and statistical measures are studied to meet both image processing and 

clinical neurophysiology standards.  
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Early identification of dementia can be achieved by diagnosis of blood oxygen level dependent 

(BOLD) signal-based functional magnetic resonance imaging (f-MRI) at resting-state. Detection 

of dementia at the stage of MCI is limited to effective spatial-temporal dependency. The 

functional connectivity (FC) among various hubs of human brain estimates neuronal health and 

disease progression. Due to motion-related artifacts at acquisition time, noise intervention, and 

many other reasons, the sparse constraint becomes predominant in Rf-MRI.  A unique Kullback-

Leibler (K-L) divergence-based sparse constrained regression model is presented, which creates 

a framework to identify and analyze connectivity between the hippocampus and other significant 

regions of interest (ROI) of brain. Experimental results demonstrate a promising improvement in 

hippocampus centric connectivity measurements. Outcome of simulated results also appears in 

the form of a whole-brain correlation matrix which shows significant improvement in 

connectivity constraints.  

 

Since the MCI related tissue loss primarily affects MTL and hippocampus, the consequent 

functional connectivity degradation can be observed in Rf-MRI analysis. A three-dimensional 

model for FC analysis between hippocampus and parahippocampus is presented to trace the early 

signs of MCI. The FC between each hippocampal subfields and parahippocampal subfields in 

their entirety is examined. A quadratic detrending algorithm is implemented to model both 

complex scanner drift constraints and longer scan sessions. The noise interventions and motion-

related artifacts and are also well handled by the presented framework. Outcomes in terms of 

correlation matrix demonstrate noticeable efficiency of dealing with functional connectivity 

constraints between hippocampus and parahippocampus. The entire process including full brain 

FC analysis leads to trace MCI related connectivity malfunctions.      
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Chapter 1 

Introduction 

Digital image processing is an indispensable component of the state-of-the-art research in 

medicinal diagnosis, neuroscience, space science, cosmology, optics, etc [1]. Image processing 

has enormous participation in various diagnoses of neurological disorders. Alzheimer‟s disease 

(AD) is major neurodegenerative dementia that mostly affects elderly persons. AD leads to 

memory loss, poor judgment, abstract thinking, disorientation of time and place [2, 3]. Detecting 

AD at an early stage, named as mild cognitive impairment (MCI), plays a crucial role in 

defending the disease progression as medication and precaution initiatives are started [4, 5] by 

that time. Severity of AD progression is observed with gradual tissue loss in some specific 

regions of the brain [6].    

Prediction of brain disease mostly depends on the systematic analysis of brain images since it is 

considered as a noninvasive and most facile study. Magnetic resonance imaging (MRI) is the 

most efficient brain imaging tool compared to computed tomography (CT) or positron emission 

tomography (PET), as it produces most prominent images of human brain. The MRI impressions 

of the brain generally represent several overlapping soft tissue cell types. Intervention of highly 

efficient image quality enhancement algorithms is therefore required to trace the progression of 

MCI or cause of MCI [7]. 

     

  

1.1   Motivation  

The number of neuronal disorders is rapidly increasing with unregulated lifestyle and mental 

stress. These include anxiety, consumption of junk food, unhealthy work and social life balance, 

poor vegan diet, lack of quality time spent for mental relaxation, and many more which are most 

crucial for mental health and psychological well-being [11]. There are various dementia which 

become prominent irrespective of age, like Parkinson‟s disease, Vascular dementia, Huntington's 
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disease, Dementia with Lewy bodies, etc [2]. However, other types of dementia like AD, 

Creutzfeldt-Jakob disease (CJD) etc mostly occur for elderly persons and their effect increases 

by aging. Globally, dementia is the seventh leading cause of death among all types of diseases 

[12]. Dementia is also counted as the most prominent cause of dependency and disability for 

elderly persons. AD is associated with tissue loss at different portions of brain depending on 

severity of the disease [13] and is responsible for 60-70% cases of dementia worldwide. The 

principal component of diagnosis for early traces of AD is MRI. As soon as AD is detected at a 

primary stage, preclusive therapies can be initiated [5] at an earliest. The treatment of AD is 

mostly preventive as the tendency of tissue loss prolongs. By adopting non-invasive MRI as a 

diagnosis technique, one can minimize the hazards and risky sample tissue analysis procedures. 

Functional magnetic resonance imaging (f-MRI) has become a crucial parameter in many of the 

state-of-the-art research in progression of this disease.  

Typical human brain consists of billions of neurons formulating gray matter (GM), white matter 

(WM) and a fluidic substance called cerebrospinal fluid (CSF). Structural regions of brain 

overlap with each other and construct a complex shape that varies for each subject. In connection 

to this, CT provides low contrast brain images which are used for primary analysis about brain 

conditions. MRI, on the other hand, provides a much more contrast-enhanced insight of brain 

structure which is further used for in-depth study. Recent state-of-the-art brain study also 

includes the connectivity among different functional hubs [15]. The functional magnetic 

resonance imaging provides both structural and functional activity of different regions of interest 

(ROI) [14, 15]. The functional activity is dynamic which is estimated from BOLD (blood-

oxygen-level-dependent) data. The f-MRI is captured and analyzed both in resting state and 

through activity analysis [16, 17]. Task-based s-MRI or activity-based f-MRI is analyzed to 

study the correlation among different functional parts of the brain [18, 19]. For predicting 

neurodegenerative brain diseases like AD, the resting state analysis is an obvious choice as it is 

more immune to noise interventions. Hence, the appropriate analysis in the context of resting-

state functional magnetic resonance image (Rf-MRI) can provide deep insight into structural 

deformation [20, 21]. This structural deformation leads to predict early signs of AD.           
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For long, image processing tools are recognized as good choices for extracting crucial 

information of brain conditions. MRI-based image processing algorithms mainly focus to extract 

structural information. Regional boundary detection of different parts of brain becomes very 

challenging as there are several overlapping soft tissue regions. Boundary detection or edge 

detection plays the most pivotal role in the determination of regional areas. Similarly, the 

clustering tool in image processing provides each brain region in a single connected zone. The 

process further leads to making a three-dimensional modeling which is used to estimate the 

volume of specific regions. Hence, volume degradation due to tissue loss can be traced out. 

Although the conventional edge detection or clustering algorithms run well for standard images, 

more advanced edge detection and clustering algorithms are required to meet the accuracy of 

MRI images. The search for suitable edge detectors and clustering algorithms is being addressed 

by various soft computing tools of late. The fuzzy logic is a widely used soft computing tool 

which is being applied in the field of image processing for a long time. Keeping in mind the 

nature of low contrast grayscale pixel intensity domain in MRI scans, fuzzy-based advanced 

edge detection techniques and clustering methods are much suitable to provide improved results. 

These results may deliberately help to provide the accuracy required for tracing volume 

degradation due to tissue loss for early AD.  

 

Rf-MRI-based image algorithms are used to extract the functional activity of major ROI. The 

structural deformation due to tissue loss affects the functional connectivity (FC) of brain which is 

reflected in Rf-MRI impressions. So, the robust connectivity models for Rf-MRI can provide a 

better response to functional change. This process inherently becomes capable to trace small 

structural changes due to tissue loss for early MCI.  

 

1.2   Objective 

 
Main objective of this thesis work is to develop robust processing algorithms for the early 

detection of AD from brain MRI images. This research work has the purpose of identifying early 

AD by analyzing MRI images with the aid of advanced soft computing measures, especially by 

employing fuzzy-based approaches. The thesis has an additional objective to find out some Rf-
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MRI based advanced process which is more capable to identify minute changes in FC due to 

structural degradation. The objective of this thesis work can be summarized as follows: 

 To find out the limitations of existing edge detection algorithms in the context of brain 

MRI scans, overcoming the drawbacks by designing new edge detection strategies that 

can distinguish prominent regional edge boundaries. 

 To develop new composite methods that can find out some easy and effective measures 

to estimate the tissue loss in regions where the effect of MCI is primarily observed, 

especially the medial temporal lobe (MTL).  

 To find out the limitations of existing image clustering methods in the context of brain 

MRI scans, and design new algorithms that can produce more robust clustering results to 

trace early tissue loss due to MCI.  

 To develop appropriate spatial-temporal dependency mathematical models that can 

identify and analyze the functional connectivity (FC) between multiple target ROI by 

eliminating diverse noise artifacts in Rf-MRI domain. 

 To find out a robust interactive three-dimensional connectivity modeling scheme for 

medial temporal lobe subfields which is capable to handle complex scanner drifts and 

motion-related artifacts in Rf-MRI domain.           

 
1.3   Methodology 

 
Early detection of AD precisely requires higher-order accuracy in the MRI or Rf-MRI processing 

techniques which are currently practiced. Although the conventional methods are adequate for 

standard images, more robust algorithm is required for brain MRI or Rf-MRI processing. The 

exploration of advanced methods demands state-of-the-art fuzzy edge detection techniques, 

composite lateral ventricle classifier, robust clustering algorithm, spatial-temporal dependency 

FC model, and interactive 3D connectivity model for medial temporal lobe subfields.     

 

Desirable edge detection tool needs to be evolved in a dynamic algorithm that provides the 

potential outcome for brain MRI scans. Existing fuzzy edge detection techniques have an 

inherent drawback in efficiency of filtering and finding out optimum edge contour. Normalized 
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MRI scans are needed to be filtered such that essential information should be preserved. The 

distinction between an edge pixel and a non-edge pixel is needed to be done more vigorously. It 

is desirable to design an algorithm that can fetch major components in MRI image space and 

incorporate a high order dynamic selection procedure of edge pixels. The combination of 

morphological filtering and novel fuzzy edge detector provides an improved regional boundary 

of brain MRI.    

    

Improved composite implementation of multiple imaging techniques is planned to be executed 

alongside improved clustering performance for clear measures of AD progression. The process 

of formulating the less complex measures will help to additionally trace the interventions of 

MCI. Due to progression early AD, the tissue loss is primarily observed in MTL and then lateral 

temporal and partial lobes. As a matter of fact, temporal tissue loss can be identified by an 

enlargement measure of the lateral ventricle (LV). In connection to this, a composite process has 

been designed by using appropriate filtering, improved clustering, segmentation and region 

growing algorithm. The process can segregate any particular section into a single connected 

region. This scheme leads to provide classified and improved LV sections in this work. The 

proposed algorithm is successfully implemented on large scale MRI images of different AD 

subjects. Here the experimental outcomes demonstrate that the proposed method is capable to 

segregate HC, MCI and AD subjects.      

 

A novel clustering algorithm is planned to be designed for more accurate outputs in the context 

of MRI image domain. The performance of the proposed method is scheduled to be executed in 

robust circumstances by introducing rician noise and sparse constraints. Thus various noise 

constraints are mathematically modeled and designed to be filtered out through the clustering 

process. The scheme of clustering is fabricated in such a way that topology-based selection of 

parsimonious neighbor pixel is incorporated mathematically and executed properly. The 

performance of the proposed strategy is further evaluated by comparing it with other state-of-the-

art clustering methods.  

 

The functional connectivity model has become a vital tool for analyzing the correlation between 

major ROIs which is dynamic in nature. In the context of tracing the neurodegenerative diseases, 
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the network hub connectivity analysis potentially provides a local to global spatial-temporal 

dynamic connectivity model for each subject.  The BOLD signal-based functional connectivity 

sequences provide a deep insight into brain which can be utilized to reveal information 

integration and communication among prominent regions. Conventional Rf-MRI based 

functional connectivity analysis has not yet been largely explored for neurodegenerative brain 

disease progression studies. In regard to this, a novel functional connectivity based mathematical 

strategy for hippocampus associative modeling and efficient sub MTL modeling is designed. 

These models will actively help to figure out minute changes in FC divergence or alteration due 

to tissue loss. A hippocampus associative modelling by appropriate mathematical modelling 

eliminates different type of noise constraints. On the other hand, the inter MTL FC analysis is 

another key indicator of structural change due to early MCI. The process needs to be a highly 

accurate study and minute interventions in terms of noise should be mathematically modelled 

and eliminated on the simulation process. A dynamic 3D detrending model is executed to study 

the interactive inter MTL, hippocampus-parahippocampus (H-PH) FC analysis. The FC analysis 

between H-PH creates a framework that enables segregating the structural changes.                 

 

 

1.4   Major Contribution 

 
Main contributions of this thesis work are listed in this subsection as follows:  

 A novel algorithm is presented which follows the connectedness and natural attachment 

of pixels located in edges of image object boundary and finds the connected edge line 

based on fuzzy weights of pixel intensities for AD brain MRI subjects. In this context, a 

robust fuzzy rule base and fuzzy inference system (FIS) have been designed and 

implemented where a fuzzy pixel intensity weight-based topological selection of 

connected edge pixels has been developed for higher-order precision. Since brain MRI 

scans are normally of low contrast, the presented algorithm is designed to extract regional 

boundaries with more precision which can easily predict or check disease progression. 

The method emphasizes settling the primary edge pixel and searches for the next adjacent 

pixel that can be counted as an edge pixel based on fuzzy pixel intensity correlation 

dynamically. Both the fuzzy rule base and FIS have been uniquely designed so that a 
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topology-based selection scheme is evolved to choose the next adjacent edge pixel. 

Finally, the selected edge pixels are accumulated in the image pixel matrix to trace an 

impression of edge contour. The implemented algorithm together with image opening and 

morphological gradient (MG) exhibits promising improvement over other existing edge 

detection algorithms. This novel strategy leads to tracing early impairment in human 

brain and helps us to detect the possible occurrence of AD.  

 

 A new composite implementation of robust morphological filtering together with self 

adaptive fuzzy clustering for improved lateral ventricle classification is presented. Firstly, 

a robust morphological filter on brain MRI scans for cerebral cortical atrophy subject is 

presented which produces a promising extraction of lateral ventricle edge information. 

Secondly, an improved fuzzy c means (FCM) clustering algorithm has been successfully 

employed on brain MRI test images to enhance the connected lateral ventricle region 

information. Implemented clustering method iteratively uses modified FCM to settle for 

optimum clustering validity index. In addition to this, ACWE and RG techniques have 

been subsequently applied to set apart LV from the rest of the brain regions. Composite 

implementation of morphological filtering and robust FCM clustering algorithm shows 

excellent extraction of LV region information both qualitatively and quantitatively. 

Further ACWE along with RG provides excellent segregation of region of interest (ROI). 

The presented method exhibits superior ability to classify HC, MCI and AD in terms of 

segmented LV regional information.   

 

 One novel adaptive neighbor information constrained deviation sparse fuzzy c-means 

clustering (AN_DsFCM) algorithm is presented. Primarily test MR images are exposed to 

low-level rician noise. It leads to a noise handling capability estimation of presented 

AN_DsFCM. This process works by estimating theoretical value or actual value rather 

than the acquired value with the aid of deviation sparse which has a precise impact on 

clustering outcome. The neighbor information is the major artifact that is modeled by the 

fuzzy objective function. While the first part of presented algorithm dynamically selects a 

neighbor set which is to be converted in the current cluster set; the second part focuses on 

noise handling attributes. An adaptive neighbor constraint is operated such that 
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AN_DsFCM provides an adorable cluster standard. In brief, the adaptive neighbor 

information constraint and sparsity in deviations to approximate theoretical value are 

delivered to meet the precision standard of brain MR images of AD subjects. 

 

 An improved hippocampus associated functional connectivity (FC) modelling is 

presented by approximating nonlinear Kullback-Leibler (K-L) sparsity constraint. A 

novel K-L divergence based regression model is presented which takes care of sparsity 

constraints in a robust way. Simulated result outcomes exhibit an improved dynamic FC 

in terms of a correlation matrix. A robust hippocampus-parahippocampus three 

dimensional functional connectivity model with quadratic detrending is proposed. The 

quadratic detrending process is presented which is capable to model both longer scan 

sessions and scanner drift constraints. The process is mainly designed to model FC 

between hippocampus and para-hippocampus in view of predicting MCI at an early stage. 

Simulation results show efficient outcomes in terms of a correlation coefficient. 

  

 

1.5   Dissertation Overview 

 
The remaining part of the thesis is organized as follows:  

 

 Chapter 2 describes an elaborated literature review in the context of fuzzy theory-based 

edge detection methods, LV classification algorithms, clustering methods, and its 

diverse applications in potential fields for analysis of brain MRI scans. The theoretical 

background of fuzzy theory, morphological filtering, edge detection, fuzzy clustering is 

explained in view of the presented theme. This chapter also focuses on a detailed 

literature survey on different BOLD signal-based FC models of brain scans to figure out 

the potential scope of MTL to global and inter MTL FC analysis in the context of 

tracing out early signs of MCI.  Various aspects of mathematical and conceptual 

background are elaborated with an emphasis to achieve a potential MTL-related FC 

model. 

 

 Chapter 3 represents a novel scheme of fuzzy pixel intensity correlation-based edge 
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detection algorithm for brain MRI scans. Implementation of robust morphological 

filtering, a new FIS system, and a dynamic correlation-based pixel classifier is presented 

in this chapter. Additionally, several methods of soft computing based algorithms are 

executed to demonstrate the supremacy of the presented algorithm.  

 

 In the context of segregation of LV, chapter 4 discusses a composite execution of MF, 

improved FCM with optimum clustering validity index, ACWE, and RG algorithm. 

Each part of the composite method is critically designed by preserving the boundary 

information. The presented method also takes care of possible overestimation such that 

MCI can be predicted with the requisite precision. Capability of the method to segregate 

different subjects of HC, MCI and AD is successfully evaluated and demonstrated for a 

large data set.    

 

 Chapter 5 illustrates a novel Fuzzy c-means clustering algorithm which incorporates 

sparse constraints. The process is designed such that topology-based selection of 

parsimonious neighbor pixel is automated in MRI image space. The adaptability in 

choice of neighbor pixel class produces more justified object edge boundary which 

outperforms a dynamic cluster output. The demonstrated process yields an improved 

clustering accuracy which is required to figure out MCI.  

 

 Chapter 6 introduces Rf-MRI based advanced algorithms on functional connectivity 

model to estimate associativity between hippocampal subregions and neighboring 

cortical fields. Initially, a robust K-L divergence based regression model is 

demonstrated which eliminates the noise by eliminating the sparse constraint and 

provides improved hippocampus connectivity. Secondly, an inter MTL hippocampus-

parahippocampus quadratic detrending model is presented towards predicting MCI. The 

process is mainly designed to model FC between hippocampus and parahippocampus in 

view of predicting MCI at an early stage. Additionally, it is also observed that the 

algorithm is capable to model both longer scan sessions and scanner drift constraints. 

    

 Chapter 7 concludes major findings of the thesis. The potential scope of future work is 
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also discussed in this chapter.                 
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Chapter 2 

Literature Review 

 

 

2.1   Alzheimer’s Disease and Detection Methods  
 

In the current era of technology, digital image processing (DIP) technique is considered as one of 

the most powerful tool which is applied in diverse domains.   

 

Cerebral atrophy is a transpiring neuronal disorder that is common for most fatal brain diseases. 

The most prominent neural disease which is intimated as cerebral cortical atrophy and accounts 

for 60% to 70% of cases of dementia is Alzheimer‟s disease (AD) [1]. Alzheimer‟s disease (AD) 

is the major neurodegenerative dementia for elderly persons that lead to memory loss, confusion, 

abstract thinking, and disorientation in time and place, and poor judgment. The primary stage of 

AD is called mild cognitive impairment (MCI) which starts very slowly and becomes worse over 

time. AD is mostly detected at late-stage where treatment can only improve some temporary 

symptoms but reverse or stop of progression is not possible [2]. Mild cognitive impairment is the 

beginning of cognitive declinement which does not notably interfere in daily activities [3]. 

Healthy control (HC) has a chance to convert into AD at about 1% - 2% [4] while MCI produces 

a high risk of developing AD with an estimation of 10% - 20% [5]. The tendency of cerebral 

cortical atrophy affectedness increases with aging and is identified as gradual shrinkage of both 

hippocampus and associative cortex tissue loss [6, 7]. Precise pharmacological initiatives can 

delay or restrict progression of MCI into moderate and severe stages [8]. Thus, to prevent AD, it 

is most important to diagnose and detect it at trivial stage of MCI. However detection of MCI 

becomes challenging due to mild symptoms and individual subject constraints [9].  

 

MCI can be accurately identified by precise detection of image object boundaries of brain MRI. 

An edge point in any digital image is a continuous higher order change in intensity or color 

between adjacent pixels. The edge contour is absolutely random in nature and represents an 
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object structure in most of the cases. Extracting shapes from various images becomes even more 

challenging in presence of noise and therefore necessitates the use of sophisticated algorithms 

[10, 11]. There exist a number of state-of-the-art algorithms for detecting edges in a digital 

image among which Roberts, Sobel, Canny, Prewitt and LoG are most popular [12-16]. In regard 

to this, Salinas et al. [17] and Perona et al. [18] proposed algorithms to produce sharp object 

boundaries compared to other Gaussian techniques.  

 

Recent studies recognize neuropathological and structural heterogeneity in MTL regional tissue 

loss for MCI and AD [19, 20]. The tendency of losing neuronal tissue is noticed mostly in some 

specific regions of human brain. Starting from para-hippocampus of MTL, shrinkage in volume 

of different brain cortices occurs in parallel. AD patients encounter a prominent atrophy in MTL 

due to diminution of hippocampus and hypertrophy is distinguished in temporal horn of lateral 

ventricles [21]. It is also spotted that the loss of neurons in human brain starts from hippocampus 

which controls the long term memory and emotional responses [22]. Nestor et al. suggested that 

the tissue loss in MTL can be predicted with enlargement of temporal horn in LV [23]. Therefore 

the extraction of lateral ventricle size information can be interpreted as a measure of tissue loss 

due to cerebral atrophy progression. 

 

A number of studies have been successfully conducted which implements morphological 

filtering in connection to medical imaging. An amalgamation of iterative double automated 

thresholding and morphological filtering (MF) for early detection of cerebral aneurism (CA) is 

demonstrated [24] in which outgrowth of blood vessel is segregated by applying MF on the 

thresholded DSA binary images. Higher order fuzzy algorithms and nature inspired optimization 

methods have been successfully implemented for image segmentation [25-28]. Huang et al. [29] 

proposed a fuzzy model to access the indication of dementia depending on magnetic resonance 

imaging. Hanung Adi Nugroho et al. [30] proposed and implemented a neutrosophic and fuzzy c-

means clustering algorithm for segmentation of contrast enhanced ultrasound image.  

 

2.2   Fuzzy Theory based Image Classification Methods  
 

There are a number of recent advancements in fuzzy clustering method for segmentation of 
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digital image object [31-33]. A sparse representation method and K-SVD dictionary learning 

algorithm is implemented for segmenting MRI scans in [32]. For better accuracy in initial 

clustering approximation of fuzzy c-means clustering, validity index has been redefined and 

modified by Xie and Beni [34], Bensaid [35] and Ren et al. [36].     

 

An edge detection technique based on a universal gravity based method was discussed in [37] 

where pixel intensity is considered as gravitational mass. One novel amalgamation technique for 

early detection of cerebral aneurism was described in [38] which employ iterative double 

automated thresholding and morphological filtering with appropriate selection of structuring 

element (SE). 

   

Another modified universal gravity law based edge detection algorithm is proposed by Malina et 

al. [39]. In this paper multiple prototypes of triangular norms have been studied on extracted 

fuzzy membership degree of resultant individual pixel gravitational force. In regard, Butkiewicz 

[40] had described the correlation property between different fuzzy variables. Advanced fuzzy 

theory have subsequently been implemented in edge detection for more distinct and accurate 

results. Melin et al. has described an edge detection technique based on generalized type-2 fuzzy 

logic and morphological gradient [41] in which the theory of alpha planes has been incorporated 

over type-2 fuzzy logic. 

 

Clustering is a widely used tool that helps to segregate patterns or objects based on similarity 

measures [42, 43]. Fuzzy based clustering algorithms are successfully applied for medical image 

analysis [44 - 48]. The application scope of K-means clustering algorithm and atlas-guided 

approaches for segmenting the brain MRI scans have been discussed in [44]. Fuzzy c-means 

(FCM) is considered as a noise free efficient clustering algorithm which is based on fuzzy logic 

[49, 50]. The most commonly used analytical fuzzy c-means clustering is proposed by Bezdek‟s 

[49]. The fuzzy c-means uses probabilistic constraint term over the membership function so that 

the sum of all membership function is equal to 1. 

 

It is observed that when data is acquired or transmitted from one entity to other, there is a higher 

probability of distortion. Due to this, there are chances of intervening noise or outliers which 
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bring challenges to traditional FCM algorithm. Consequently, a number of modified versions of 

FCM was introduced in the literature amongst which possibilistic c-means (PCM) is well known 

[51, 52]. PCM is sensitive to initialization and it clusters the data points on the basis of 

possibility of the membership function belonging to the cluster [53]. Pal et al. introduced a 

hybrid possibilistics fuzzy c-means algorithm (PFCM) [54] which is a combination of 

possibilistic c-means (PCM) and fuzzy c-means algorithm. PFCM is less sensitive to noise where 

partitioning is carried out not only on the basis of membership but also with possibilities.  

  

Sparsity on the membership matrix of PCM is imposed by an algorithm known as sparsity-aware 

possibilisctics clustering method (SPCM), proposed in [55]. SPCM is capable to measure cluster 

centers with more precision. Car et al. [56] proposed fast generalized fuzzy c-means method 

(FGFCM), which improves the clustering by introducing local similarity measure. Later Zhu et 

al. [57] proposed a clustering algorithm by improving the fuzzy partition matrix named 

GIFP_FCM. This algorithm is suitable to provide good performance during segmentation of 

noisy images. 

  

The elimination of noise interventions was a point of interest for justified reasons. The inclusion 

of neighbor information constraint into FCM used to be initiated both for enhanced clustering 

accuracy and elimination of noise. Ahmed et al. [58] proposed FCM for bias field estimation 

algorithm (BCFCM) by influencing neighbor information constraint in the objective function. 

This method is more immune to noise compared to FCM. The BCFCM is successfully 

implemented for segmentation of brain MRI data. FCM_S1 and FCM_S2 are two variations of 

FCM_S [59]. However, the parameter selection is very challenging in FCM_S method.  

 

Krinidis and Chatazis [31] proposed robust fuzzy logical information c-means method (FLICM) 

which is very effective for image corrupted by noise or outliers. Zhang et al. [46] proposed 

another algorithm based on adaptive fuzzy logical c-means (ADFLICM) for the purpose of 

remotely sensed imagery classification. ADFLICM is designed for decreasing the edge blurring 

artifact and handling noise. FLICM is also able to achieve considerable results in case of noisy 

data. FLICM is associated with a fuzzy factor which is related to the cluster centers and 
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membership in each iterative step. Another kernel version of FLICM is proposed by Gong et al. 

[60] named KWFLICM which is unstable and time consuming. 

 

Zhao [61] proposed an algorithm called Kernel generalized fuzzy c-means (KGFCM) clustering 

with spatial information for segmentation (KGFCM). This algorithm can improve the 

performance of GIFP_FCM proposed in [57]. Again KGFCM could be further modified to its 

advanced versions KGFCM_S1 and KGFCM_S2 by considering its neighbor information. These 

techniques are robust to noise but they are sensitive to parameter selection. The KGFCM is 

successfully implemented for different noisy images including MRI data in [61]. Gu et al. [62] 

proposed another method for detection of noise by using noise detecting fuzzy c-means 

algorithm (NDFCM). NDFCM method used two image filtering methods for removal of the 

noise. Its noise level is considered in each local window of NDFCM. But the performance of 

NDFCM solely depends on the selection of the parameters. Zhao et al. [63] proposed 

neighborhood weighted fuzzy c-means method (NWFCM). In this algorithm, they used 

Euclidean distance in FCM with neighborhood weighted distance. NWFCM is immune to noise 

but the computational cost is very high. The method is applied for segmentation of rician noise 

induced brainweb T1-weighted MR images in [63]. Lei et al. [64] proposed an algorithm called 

fast and robust fuzzy c-means clustering (FRFCM). It considers membership filtering and 

morphological reconstruction for its inherent mode of operation. This algorithm is simple, fast 

and also efficient for noisy image segmentation. 

 

Gu et al. [47] proposed fuzzy double c-means method (FDCM) by introducing sparse in FCM. 

FDCM is able to handle data-set with different dimensions simultaneously. However the 

computational cost is very high for FDCM. Y Zhang [33] proposed deviation sparse fuzzy c-

means (DSFCM) and a neighbor information based DSFCM (DSFCM_N) algorithm in which 

spatial correlation is considered. But the gross and overexerted estimation of neighbor 

information does not seem to meet sufficient clustering accuracy.    

 

There are several improvements in the implementation of interval type-2 fuzzy FIS with the 

incorporation of genetic algorithm [65], evolutionary computation [66] and so on [67, 68]. 

Nature inspired optimization techniques have been widely implemented in the field of image 
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segmentation [69 - 71] of late. In recent times, information theoretic learning based 

discriminative segmentation algorithm for brain MRI impression is proposed by Kong et al. [72], 

whereas a minimal path propagation technique with backtracking approach has been introduced 

in [73] to extract curve like geometric structures which can be potentially implemented for brain 

image segmentation purpose. Deng and his co-workers have presented a fusion method between 

hierarchical deep neural network and fuzzy system to form dataset to be classified [74]. The 

authors have successfully implemented fuzzy based deep learning algorithm to classify brain 

MRI scans which contain high level of uncertainty.  

 

The automatic diagnostics of AD patients to distinguish with different degrees of mental 

impairment is considered as a major challenge. Support vector machine classifier was applied on 

features obtained from volumetric measurements of hippocampus [75] and other brain areas [76].  

Recently multiple deep-learning algorithms have been implemented to this task. Gupta et al. [77] 

implemented a pretraining method based on a sparse autoencoder to execute classification on the 

Alzheimer‟s Disease Neuroimaging Initiative (ADNI) dataset. Hon and Khan [78] successfully 

implemented advanced architectures such as VGG (Simonyan and Zisserman [79]) and Inception 

Net (Szegedy et al. [80]) on the OASIS dataset (Marcus et al. [81]), choosing the most 

information contained slice sections in the 3D impressions based on image entropy. Valliani and 

Soni [82], demonstrated that a ResNet (He et al. [83]) imposed on ImageNet (Deng et al. [84]) 

performed better than a baseline 2D CNN. Hosseini-Asl et al. [85] showed a 3D CNN 

architecture on ADNI and the CAD Dementia challenge (Bron et al. [86]) data set. Cheng et al. 

[87] presented a more computationally-efficient method based on long 3D patches produced by 

individual CNNs, which are further combined by an additional CNN to process the output. Lian 

et al. [88] impemented a related hierarchical CNN algorithm that automatically segregrate the 

significant patches. Khvostikov et al. [89] applied Siamese network to distinguish regions of 

interest (ROI) around the hippocampus fusing data set from multiple imaging modalities. As 

described in a relevant review article, Wen et al. [90], several existing works suffer from data 

leakage for flawed data splits, biased transfer learning rate, or the absence of independent test 

set. The report also shows that, in the absence of data leakage, CNNs achieve an impressive 

accuracy of 72-86% when distinguishing between healthy controls (HC) and AD. In a similar 

study, Fung et al. [91] showed the effect of multiple data-splitting methods on classification 
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accuracy. Bäckström et al. [92] also reported the effect of splitting methods and reported 

indistinguishable outcomes for two-way classification. 

 

2.3   Advanced Methods of Image Classification  
   

Predicting MCI by analysis of MRI is being practiced for a long time by researchers so that 

medication and precautionary measures can be initiated as early as possible. In this context the 

resting state functional MRI (Rf-MRI) analysis is a state of the art tool for assessment of MCI 

Progression [93 - 97]. Using BOLD (blood oxygen-level-dependent) signal based Rf-MRI data 

analysis; several learning based methods have been adopted for automated detection of AD [98, 

99]. These techniques mainly use Pearson‟s correlation coefficient based functional connectivity 

(FC) assessment to model the temporal relationship between different region of interests (ROIs). 

These methods are mostly developed by considering FC as a stationary entity throughout the 

fMRI acquition process. Some recent studies demonstrates that FC in human brain is not a static 

rather dynamic parameter [100, 101]. Hence several new efforts have been made towards 

dynamic connectivity analysis which are focused to model local temporal dynamic property and 

local spatial dependency. Further the algorithms are developed for local-to-local and local-to-

global spatial-temporal dependency model which might help to trace the change in brain 

networks [102]. In addition to FC, a different approach named network hub connectivity 

biomarker is used to find out the communication and information integration among different 

regions of brain [103 - 105]. Some recent studies show that progression of AD like 

neurodegenerative diseases significantly affects the activity of different functional hub regions in 

human brain and Consequent abnormality is observed in brain network connectivity [106 - 108].  

In order to find out the functional connectivity between different brain regions, a deep learning 

based technique using Pearson‟s correlation is implemented by Ju et.al [109].    

 Further a deep learning based method, i.e., Spatial Temporal convolutional-recurrent neural 

Network (STNet) is also demonstrated in [110]. This technique models the whole brain temporal 

sequences in dynamic FC patterns for identification of MCI.  

 

The MCI is recognized as gradual shrinkage of the hippocampus in medial temporal lobe (MTL) 

[111]. Hippocampus is structurally heterorogenious in nature which is constructed of dentate 

gyrus (DG), cornu ammonis (CA) 1-4, presubiculum, subiculum, prosubiculum, parasubiculum 
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and uncus. Hippocampus is responsible for long term memory and emotional responses where 

gradual tissue loss is observed with progression of MCI [112, 113]. The source of the canonical 

tri-synaptic pathway is the entorhinal cortex (ENT), which is the primary input to the 

hippocampus. Anatomical evidence reveals that hippocampus-associated regions including the 

ENT, perirhinal (PRC), posterior parahippocampal (PHC) and retrosplenial (RSC) cortices 

interact with hippocampal subfields directly, avoiding the canonical hippocampal passageway in 

both non-human primates [114 - 117] and rodents [118]. Parahippocampal gyrus is a section of 

grey matter cortical region which is surrounded by the hippocampus. The hippocampus 

associated parahippocampus plays a major role in memory retrieval and memory encoding.    

 

The hippocampal-parahippocampal associative in vivo framework in human brain can be studied 

by characterizing the acquired Rf-MRI FC to reveal the MCI progression. In this context the 

anatomical pathways are often reflected by Rf-MRI FC [119]. Due to technical challenges 

inherent to human hippocampal subfield modeling by using MRI, only a few numbers of studies 

have been reported. Additionally there is no systematic study of FC between different ROI 

subfields.   

Several correlation coefficient based dynamic learning methods are examined to model spatial-

temporal dependency changes in functional brain networks [120]. Network hub connectivity 

biomarker is also implemented to extract communication and information integration among 

different ROIs by using BOLD (blood oxygen-level-dependent) signal [121 - 123]. In some 

recent studies the FC of each human hippocampal subfield along with longitudinal axis and 

anterior-posterior axis has been systematically characterized [124]. In connection to this, several 

advanced deep-learning based algorithms have been recently implemented for the early detection 

of Alzheimer‟s disease [125 - 127]. 
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Chapter 3 

A Novel Fuzzy Pixel Intensity Correlation 

Based Brain MRI Segmentation Algorithm 

 3.1   Introduction 

This chapter presents a novel fuzzy segmentation algorithm for brain MRI images which 

produces improved outcomes. The test MRI scans are initially converted into gray scale images 

and followed by an implementation of structuring element for image opening. This process 

effectively enhances the contrast of all the boundary regions of brain which contains crucial 

information for mild cognitive impairment. A novel rule-base of higher order fuzzy system is 

presented which dynamically chooses edge pixels and accordingly segregates the next probable 

edge pixel. The advanced fuzzy inference system (FIS) is inspired by fuzzy connectedness 

algorithm and the FIS converts probable edge pixels into edge pixels depending on intensity 

correlation between ordered pixels. In support of designed rule-base, the presented algorithm 

further accumulates the edge pixels into an edge contour. The proposition is finally tested over 

several ADNI and real time brain MRI images of different subject and orientation. Experimental 

results show a promising improvement in MRI object boundaries detection and enhance image 

contrast both qualitatively and quantitatively. 

3.2   Initial Works 

Predicting brain diseases mostly relies on the analysis of brain images since it is considered to be 

most facile and non invasive study. Among many possible imaging techniques like computer 

tomography, magnetic resonance imaging and positron emission tomography; MRI is most 

promising brain imaging tool as it produces better contrast enhanced images. As different layers 

of overlapping cell types in different parts of human brain have non-identical responses in 

magnetic field of MRI, prominent edges are generally not obtained in MRI scans. This paper 

focuses on a novel edge detection technique specially designed for MRI brain scans. 
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A number of modified image processing techniques together with the novel proposition helps 

to achieve necessary edge enhancement for brain MRI scans. Associated techniques like 

opening, morphological gradient, Fuzzy connectedness algorithm and Fuzzy pixel intensity 

correlation based segmentation algorithm are subsequently introduced in this section with 

necessary mathematical illustration. 

3.2.1    Pre-processing 

All the input MRI scans are converted into corresponding gray scale image. The gray scale 

image 𝐼, thus received, can be expressed as [1, 2]: 

𝐼 𝑖, 𝑗 =  0.299𝐼𝑅 𝑖, 𝑗 +  0.587𝐼𝐺 𝑖, 𝑗 +  0.114𝐼𝐵 𝑖, 𝑗  ∀𝑖 ∈  1,2,… . . ,𝑁𝑅  𝑎𝑛𝑑𝑗 ∈ {1,2,… . . ,𝑁𝐶}               

(3.1)                                                                                                                 

where coefficients 𝐼𝑅 , 𝐼𝐺 , 𝐼𝐵  represent red, green and blue components of true colour (RGB) 

image respectively. 𝑁𝑅  𝑎𝑛𝑑 𝑁𝐶  symbolize the number of rows and columns present in the input 

image respectively. The hue and saturation information present in an RGB image are eliminated 

and luminance is conserved in (3.1).   

 3.2.2    Morphological Filtering  

Opening and closing are two constituents of morphological filtering that are widely used to 

extract important features from digital images [1, 3]. The process of obtaining opening and 

closing is initiated with another two morphological processes namely erosion and dilation.             

Erosion of test image 𝐼 by the proposed non-flat structuring element, 𝑏𝑁𝐹  at any location (x, y) is 

given by [1]: 

 𝐼 ⊖ 𝑏𝑁𝐹  𝑥,𝑦 = min
(𝑠,𝑡)∈𝑏𝑁𝐹

{𝐼 𝑥 + 𝑠,𝑦 + 𝑡 − 𝑏𝑁𝐹(𝑠, 𝑡)} 

(3.2)                                                                                                                 

Similarly, the dilation of image 𝐼 by the same SE at any arbitrary location (x, y) is given by: 

 𝐼 ⊕ 𝑏𝑁𝐹  𝑥,𝑦 = max
(𝑠,𝑡)∈𝑏𝑁𝐹

{𝐼 𝑥 − 𝑠,𝑦 − 𝑡 + 𝑏𝑁𝐹(𝑠, 𝑡)} 

(3.3)                                                                                                                 

Opening and closing of gray scale test image I is similar to opening and closing of binary image 

and can be written as: 

                                                             𝐼 ∘ 𝑏𝑁𝐹  𝑥,𝑦 = (𝐼 ⊖ 𝑏𝑁𝐹) ⊕𝑏𝑁𝐹     

(3.4) 
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                                                             𝐼 • 𝑏𝑁𝐹  𝑥,𝑦 = (𝐼 ⊕ 𝑏𝑁𝐹) ⊖𝑏𝑁𝐹      

(3.5)                      

In order to find out lateral ventricle edge information, opening is implemented exclusively in the 

proposed algorithm. Moreover, any chance of overestimation in object boundary can also be 

avoided with the aid of opening.   

3.2.3   Morphological Gradient  

Morphological gradient (MG) is defined as the „difference‟ between two adjacent pixel intensity 

and it is used to extract gradient information in a continuous image. The basic unit of gradient 

based boundary segmentation is gradient operator „∇‟ which can be defined for an input MRI 

gray scale test image 𝐼 in continuous space as [3, 4]: 

∇𝐼 𝑍𝑥 ,𝑍𝑦 =
𝜕𝐼 𝑍𝑥  ,  𝑍𝑦 

𝜕𝑍𝑥
𝑎𝑥 +

𝜕𝐼 𝑍𝑥  ,  𝑍𝑦 

𝜕𝑍𝑦
𝑎𝑦  

(3.6) 

where Zx and Zy are two adjacent pixels, 𝑎𝑥  and 𝑎𝑦  are unit vectors along x and y axis 

respectively. The magnitude component of gradient vector in (3.6) determines the maximum rate 

of change in intensity at the location (𝑥0,𝑦0) and is expressed as  

 ∇𝐼 𝑍𝑥 ,𝑍𝑦  =   
𝜕𝐼(𝑍𝑥  ,  𝑍𝑦 )

𝜕𝑍𝑥
𝑎𝑥 

2

+  
𝜕𝐼(𝑍𝑥  ,  𝑍𝑦)

𝜕𝑍𝑦
𝑎𝑦 

2

 

(3.7) 

The counterpart of gradient, i.e. direction indicates maximum increase in intensity. For 

developing an edge detection strategy using MG, a local maxima of ∇𝐼(𝑍𝑥 ,𝑍𝑦) is produced in 

many of the existing techniques. This is equivalent to a line segment for finding out a desired 

edge contour. As most of the medical images have graded transition between two regions, it 

becomes tough to choose right pixel for object boundary.  

In connection to this, one pixel grid structure in a miniature  3 × 3  matrix within whole image 

is depicted in Fig.3.1. Any arbitrary single pixel (Z0) is considered to be surrounded by eight 

pixels formatting a (3 × 3) matrix as shown.  
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Fig. 3.1:  3 × 3 pixel matrix indicating associated arrangement and possible gradient directions 𝐷𝑖   

Considering the center pixel as an edge pixel, the probable direction of edge which is calculated 

by possible gradients 𝐷𝑖  ∀𝑖 ∈ {1,2,3,4} may be expressed as [4, 5]:   

𝐷1 =   (𝑍0 − 𝑍1)2 + (𝑍0 − 𝑍5)2    𝐷2 =   (𝑍0 − 𝑍2)2 + (𝑍0 − 𝑍6)2   

 𝐷3 =   (𝑍0 − 𝑍3)2 + (𝑍0 − 𝑍7)2   𝐷4 =   (𝑍0 − 𝑍4)2 + (𝑍0 − 𝑍8)2                              

(3.9)          

where 𝑍0 = 𝑖 𝑥,𝑦 ,𝑍1 = 𝑖 𝑥 − 1,𝑦 + 1 ,𝑍2 = 𝑖 𝑥,𝑦 + 1 ,𝑍3 = 𝑖 𝑥 + 1,𝑦 + 1 ,𝑍4 = 𝑖 𝑥 + 1,𝑦 ,𝑍5 =
𝑖 𝑥 + 1,𝑦 − 1 ,𝑍6 = 𝑖 𝑥,𝑦 − 1 ,   𝑍7 = 𝑖 𝑥 − 1,𝑦 − 1 ,  𝑍8 = 𝑖(𝑥 − 1,𝑦)     

              

In conventional process, edge E is calculated as:       

                                                                  𝐸 = 𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 

(3.10) 

3.2.4    Fuzzy Connectedness Algorithm 

Fuzzy connectedness algorithm is a theory of fuzzy object extraction from n-dimensional digital 

space based on fuzzy connected image elements. The fuzzy digital image space I is an n-

dimensional Euclidian space 𝑅𝑛 , that can be subdivided into hyper cuboids (spels) into n 

mutually orthogonal families of parallel unit spaced hyper planes. Let 𝛾 = (𝐶,𝑓)  be a 

membership scene over a fuzzy digital space(𝑍𝑛 ,𝛼). Let us also consider 𝜅  be a fuzzy spel 

affinity in 𝛾 and 𝒩 be the fuzzy 𝜅-net of  𝛾. The set of all possible paths in 𝛾 from k to l is 

denoted by 𝑃𝑘 ,𝑙 . The fuzzy 𝜅-Net 𝒩 of 𝛾 is a fuzzy subset of 𝑃𝛾  with its membership function 

defined as [6]: 

𝜇𝒩 𝑝 = min 𝜇𝜅 𝑐
 1 , 𝑐 2  ,𝜇𝜅 𝑐

 2 , 𝑐 3  ,… , 𝜇𝜅 𝑐
 𝑚−1 , 𝑐𝑚     

(3.11) 

Fuzzy 𝜅-Connectedness in 𝛾 denoted by K, is a fuzzy relation in C, defined as:  
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                                                       𝜇𝐾 𝑘, 𝑙 =  max𝑝∈𝑃𝑘𝑙  𝜇𝒩 𝑝   ∀ 𝑘, 𝑙 𝑖𝑛 𝐶                                        

(3.12) 

Fuzzy connectedness algorithm basically assigns a strength of connectivity to every set of 

𝑠𝑝𝑒𝑙𝑠 (𝑘, 𝑙) . Among numerous possible paths between k and l, there exists a weakest link 

(defined by smallest affinity between spels) that determines the strength of connectivity along 

that path. The strength of connectivity from k to l is determined by the strongest path. 

3.3  Proposed Algorithm 

Input MRI scans are initially converted into gray level and subsequently processed with 

proposed morphological opening and finally executed through proposed fuzzy logic system 

(FLS).  

Proposed algorithm has been explicitly described in this section with necessary mathematical 

illustration for the purpose of early detection of Alzheimer‟s disease. In connection to this, a 

fuzzifier has been proposed that uses one novel possible edge pixel selector depending upon 

individual fuzzy weights. Proposed method normalizes the intensity of each pixel and 

categorizes individual intensity value into five equidistant fuzzy levels. The fifth order deviation 

in fuzzy intensity levels provides higher flexibility of pixel segmentation. It also creates precise 

difference amongst those test pixels which are adjacent to edge pixel by avoiding near value 

congestion. 

It has been observed that exclusive application of proposed fuzzy edge detection technique 

promises to reveal better gray matter and white matter boundary information while it shows less 

coherence on extracting important lateral ventricle information associated to hippocampus. This 

loss of information is considered to be extremely crucial for early AD detection. Present study 

reveals that prior opening of MRI scans with appropriate non uniform SE can expose lateral 

ventricle information which is a passive measure of hippocampus. Since lateral ventricle is 

surrounded by hippocampus, higher volumetric measure of lateral ventricle identifies noticeable 

tissue loss in AD. This has been applied in (3.13) as best fitted SE for opening in which general 

orientation and gross allocation of boundary objects in gray scale MRI scans have been taken 

into our consideration.  
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                                                                       𝑏𝑁𝐹 =  

 
 
 
 
 
 
 
 1   0   0   0   1 
 1   0   0   0   1 
 0   1   0   1   0 
 0   0   1   0   0 
 0   1   0   1   0 
 1   0   0   0   1 
 1   0   0   0   1  

 
 
 
 
 
 

                                                                     

(3.13) 

Each pixel-intensity of input image matrix is weighted and associated with five Gaussian fuzzy 

equivalent membership functions; namely H (High), MH (Moderate High), M (Medium), ML 

(Moderate Low) and L (Low). In order to adapt different gray tones, intensity value of each pixel 

in image matrix is initially normalized to make it suitable for application under Gaussian 

membership function standards. These values have been used to calculate the mean of 

membership functions for each input 𝐷𝑖  ∀𝑖 ∈ {1,2,3,4}. Proposed fuzzy inference system has 

single linguistic output values: Edge (E) or No Edge (Not E) in between the range [0, 1] where 

the fuzzy gradations can be represented in (3.14a) to (3.14g). The normalized crisp value x of 

individual pixel weight which lies between [0, 1] is mapped by singletone fuzzifier in accordance 

with (3.14j). For normalized input image gray tones, the output Gaussian membership functions 

are obtained from (3.14l) where the standard deviation (𝜎) and mean (m) of each function is 

calculated vide (3.14h) to (3.14k).       

𝐿𝑜𝑤𝑖 = 𝑀𝑖𝑛(𝐷𝑖)                                                                                                                                               (3.14a)                                                                                          

𝐻𝑖𝑔𝑖 = 𝑀𝑎𝑥(𝐷𝑖)                                                                                                                                            (3.14b) 

𝑀𝑒𝑑𝑖𝑢𝑚𝑖 =  𝐿𝑜𝑤𝑖 +  (𝐻𝑖𝑔𝑖 − 𝐿𝑜𝑤𝑖)/2                                                                                                    (3.14c) 

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐻𝑖𝑔𝑖 = 𝑀𝑒𝑑𝑖𝑢𝑚𝑖 + (𝐻𝑖𝑔𝑖–𝑀𝑒𝑑𝑖𝑢𝑚𝑖)/2                                                                          (3.14d) 

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐿𝑜𝑤𝑖 =  𝐿𝑜𝑤𝑖 +  (𝑀𝑒𝑑𝑖𝑢𝑚𝑖 − 𝐿𝑜𝑤𝑖)/2                                                                                  (3.14e) 

𝐸𝑑𝑔𝑒𝑖 = 1                                                                                                                                                           (3.14f) 

𝑁𝑜 𝐸𝑑𝑔𝑒𝑖 = 0                                                                                                                                                    (3.14g)                                                                                                                                   

𝜎𝑥 = 𝐸𝑑𝑔𝑒𝑖/4                                                                                                                                                    (3.14h) 

𝑚1 =  𝐸𝑑𝑔𝑒𝑖                                                                                                                                                        (3.14i) 

𝑚2 =  𝑚1 +  (𝑚1  ×  𝜇𝑥)  where intensity equivalent 𝜇𝑥  is in [0,1]                                                         (3.14j) 

𝑚𝑥 = (𝑚1 + 𝑚2)/2                                                                                                                                          (3.14k) 

𝜇𝑥
′ = 𝑔𝑎𝑢𝑠𝑠𝑚𝑓 𝑥,  𝜎𝑥 ,𝑚𝑥   =  𝑒𝑥𝑝  −

1

2
 
𝑥−𝑚𝑥

𝜎𝑥
 

2
                                                                                     (3.14l) 

  3.3.1    Proposed Fuzzy Rule-base 

Proposed fuzzy rule-base is quite different from conventional ones. It uses Fuzzy type I 

Mamdani rule-base in a way that continuous checking and support for decision in favor of „test 

pixels (𝑍𝑖) to be converted into edge pixels‟ is carried out in parallel. This process itself follows 
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the natural rugged continuation of edges present in a digital image. Though the topological 

search and selection for edge pixel are concurrently executed in a complex hand shaking mode 

between rule-base and FIS; proposed rule-base, being a part of FLS, effectively generates a 

single output as either „edge pixel‟ or „not an edge pixel‟ as identified in Fig. 3.2. As a matter of 

fact, fuzzy rule-base with p inputs 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2,… , 𝑥𝑝 ∈ 𝑋𝑝  produces single output 𝑦 ∈

𝑌which reflects a multiple input single output (MISO) system. With appropriate membership 

functions, input and output variables are modelled with proposed novel fuzzy rule-base as 

follows: 

 

Fuzzy rule-base 

If   𝐷𝑘  is H and 𝐷𝑙  is NOT H  

                  where  𝑘 ∈ 𝑖, 𝑙 ∈ 𝑖, 𝑙 ≠ 𝑘 𝑎𝑛𝑑 𝑖 = [1, 2, 3, 4] 
                      disp (‘𝑍0 is EDGE’); 

      Elseif 

                          Dk+1 or Dk-1 is NOT H and NOT MH 

                          disp (‘𝑍0 is  Edge  and 𝑍𝑖  is  PROBABLE  EDGE   PIXEL’); 

               Send a signal S1 to FIS; 

               Break; 

     Elseif 

                          𝐷𝑘  is MH and 𝐷𝑙 is NOT H and NOT MH 

           disp (‘𝑍0 is EDGE’); 

               Elseif 

                        𝐷𝑘+1 or 𝐷𝑘−1 is NOT H and NOT MH and NOT M 

        disp (‘𝑍0 is EDGE and 𝑍𝑖  is PROBABLE EDGE PIXEL’); 

            Send a signal S2 to FIS;  

 Else 

    disp (‘𝑍0 is NO EDGE’); 

               end if; 
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Fig. 3.2:  Proposed FLS 

Since the simple conventional execution of multiple input single outputs (MISO) rule-base is 

inefficient to search for possible edge pixel, rule-base is structured in a form so that it can 

synchronize with proposed FIS.   

   3.3.2    Proposed Fuzzy Inference System  

In this proposal, selection of next edge pixel (𝑍𝑖) adjacent to current edge pixel (𝑍0) at origin has 

been given utmost importance. A unique combination of Mamdani-type FLS logic with adjacent 

edge pixel selection topology has been incorporated. This combination traces down the most 

probable edge pixels and construct edge contour. Dynamic tracking and selection of edge pixels 

have made this algorithm novel compared to other state-of-the-art techniques. Topological 

selectivity of pixels in the algorithm automatically nullifies the chances of back-tracking. This 

algorithm, being inspired by common rugged continuation of edge topologies present in digital 

images, has been illustrated by means of a flow chart in Fig. 3.3.     

Selection of associated fuzzy levels used in the proposed rule-base depends on mutual correlative 

difference of pixels. Proposed rule-base executes the center pixel 𝑍0 in Fig. 3.1 as TEST PIXEL 

and searches for selective best fit value (preferably H then MH). After obtaining the best fit 

value, it converts TEST PIXEL into EDGE PIXEL and searches for next associated EDGE PIXEL 

considering 𝑍𝑖  as TEST PIXEL dynamically. The best fit values have been implemented in rule-
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base to establish better precision of detected edge contour. The associability of TEST PIXEL with 

CENTER PIXEL can be approximated by appropriate fuzzy correlation function.  

Fuzzy connectedness algorithm attempts to find the strongest path among weak links. This 

creates an ambiguity as the weakest link weighting is unknown and the situation becomes 

complicated for multiple tinny edges. Fundamentally, fuzzy connectedness algorithm and 

proposed method are close as both aims to find out fuzzy connectivity between spels. But instead 

of finding strongest fuzzy connectivity between two arbitrary spels as in [4], proposed algorithm 

focuses on choosing best fit correlated values of adjacent spels and accumulating them to find a 

desired link in fuzzy digital image space.  

Fig. 3.3: Flow chart of proposed FIS

This algorithm terminates in abundance of best fit fuzzy weight so that segmented edges are 

traced with assured weight. Correlation between two adjacent pixel intensities is initially 

determined in this proposition. Let 𝐼𝑘  be any arbitrary EDGE PIXEL or CENTER PIXEL in Fig. 
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3.1 and adjacent TEST PIXEL is identified by 𝐼𝑘+𝑖 . Fuzzy correlation function in fuzzy image 

space is therefore defined as:   

                           𝑅𝐼𝑘 𝐼𝑘+𝑖
 𝜏,𝑎, 𝑏 = (𝐼𝑘 𝑡,𝑎 , 𝐼𝑘+𝑖(𝑡 − 𝜏, 𝑏))𝐿𝑓

2 =   𝐼𝑘 𝑡,𝑎 𝐼𝑘+𝑖
∗ 𝑡 − 𝜏, 𝑏 𝑑𝑡            

+∞

−∞
             

(3.15) 

Correlation between adjacent pixel intensities has been modeled by H and MH membership 

functions in the proposed approach. This strategy is implemented with the help of proposed rule-

base and it settles optimum edge strength. With reference to a (3 × 3) pixel matrix as in Fig. 3.1 

and considering Z0 as an EDGE pixel, equation (3.11) in section 3.2.4 has been modified in 

(3.16). It expresses the membership function of associated membership scene over a fuzzy digital 

space 𝑍𝑛 ,𝛼  as outlined below: 

𝜇𝒩 𝑝 =   

Z0 = Zi       when: max 𝑅𝐼𝑘 𝐼𝑘±1
 𝜏,𝑎, 𝑏  is H

Z0 =  Zi   when: max 𝑅𝐼𝑘 𝐼𝑘±1
 𝜏, 𝑎, 𝑏  is MH

0       𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

(3.16)                       

Proposed Fuzzy 𝜅 -Connectedness in  𝛾 , denoted by K, is now a fuzzy relation in C. This 

effectively represents an edge in fuzzy digital image space and is defined as:  

𝜇𝐾 =   [𝜇𝒩(𝑝)

𝑃

𝑝=1

] 𝑖𝑛 𝑎 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝐶 

(3.17)                       

In the absence of membership functions H or MH, algorithm terminates automatically and 

interprets this as an end of edge. This process is repeated in the entire image domain to find out 

all prominent edges. Proposed method in (3.17) moves on checking best fit individual spel 

intensity and accumulates them to construct strong and weak edges.   

    3.3.3    Defuzzification 

After successful execution of proposed FIS, defuzzification is accomplished on test images to get 

desired result. Defuzzification reduces a fuzzy set into a crisp single valued quantity or set.  

There are several standard defuzzification methods such as maxima method, centroid method, 

weighted average method, middle-of-maxima method, first-of-maxima or last-of-maxima 

method in the literature out of which mean of maxima method has been employed in the present 

approach. Defuzzification provides the crisp tone in fuzzified adjacent pixel intensities of 
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detected edge contour. This process dispenses equivalent potential of input data set that was 

converted to fuzzified weights during FLS processing. For simulated mean of maxima method, 

defuzzification is obtained by  

𝑥∗ =  
 𝑥𝑖𝑥𝑖∈𝑀

 𝑀 
      

(3.18)                       

 where,   𝑀 =   𝑥𝑖 𝜇𝐾 𝑥𝑖 = (𝐶) ,  𝑀  is the cardinality of the set M  and h(C) is the height off 

fuzzy set C.   

3.4  Simulation Results 

Supremacy of the proposed algorithm over other existing techniques has been demonstrated on 

twelve brain MRI images for the sake of comparison. All the test images are collected from 

ADNI database having different subject, age, series, slice and acquisition plane. The proposed 

algorithm is implemented in MATLAB R2014a platform with core i5 processor @ 3.20GHz, 4 

GB RAM and Windows 7 Professional 32 bit operating system. Detailed description of the 

utilized dataset has been provided in Table 3.1 below.    

 

Table 3.1: Imaging parameters for Test images 
 

Edge 

detector 

Test 

image 1 

Test 

image 2 
Test 

image 3 
Test 

image 4 
Test 

image#5 
Test 

image 6 

Test 

image 7 

Test 

image 8 

Test 

image 9 

Test 

image 10 

Test 

image 11 

Test 

image 12 

ADNI 

image ID 
569634 569634 116582 116582 116582 13722 13722 13721 13721 13721 13721 863060 

Type details 
T2 

FLAIR 

PD/T2 

FSE 

MP-

RAGE 

MP-

RAGE 

MP-

RAGE 

MP-

RAGE 

MP-

RAGE 
MP-R R MP-R R MP-R R MP-R R MP-R R 

Slice 18 of 35 17 of 35 85 of 170 
128 of 

256 

128 of 

256 

156 of 

256 

164 of 

256 
70 of 166 

102 of 

166 

100 of 

256 
90 of 256 

122 of 

256 

Acquisition 

plane 
Axial Axial Sagittal Coronal Axial Axial Axial Sagittal Sagittal Coronal Coronal Coronal 

 
 

In order to generate the reference image, five well established edge detection techniques namely 

Sobel, Canny, Prewitt, Roberts and Log have been collectively used by image addition. Image 

addition preserves the individual response of edge detectors which enriches the quality of 

reference image. Simulation result of the proposed algorithm has been depicted in Fig. 3.4 to 

3.15 which includes original image, reference image, resultant images obtained with MG, 

combination of MG and type I FLS, an improved Ant Colony (AC) based edge detector [7], 
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Genetic algorithm (GA) based edge detector [8] and the proposed fuzzy pixel intensity 

correlation based segmentation algorithm combined with MG. Though proposed technique 

identifies the enhancement of edge information over the entire brain region, some prominent 

regions are highlighted with rectangular red boxes.  

 

 

 

 

 

         

 

               Original image                  Reference image                           MG                               MG + T1            

 

                         AC                                      GA                                   Proposed                 Proposed (Highlighted)            

 

Fig. 3.4 Comparative analysis for Test image 1 
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           Original image                   Reference image                              MG                                   MG + T1            

 

                       AC                                        GA                                   Proposed                 Proposed (Highlighted)            

Fig. 3.5 Comparative analysis for Test image 2 

 

 

        Original image                    Reference image                                MG                                   MG + T1            

 

                  AC                                        GA                                       Proposed                      Proposed (Highlighted)            

Fig. 3.6 Comparative analysis for Test image 3 
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        Original image                      Reference image                                 MG                                   MG + T1            

 

                  AC                                           GA                                        Proposed                  Proposed (Highlighted)            

Fig. 3.7 Comparative analysis for Test image 4 

 

 

          Original image                  Reference image                                 MG                                    MG + T1            

 

                     AC                                         GA                                     Proposed                    Proposed (Highlighted)            

Fig. 3.8 Comparative analysis for Test image 5 
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          Original image                      Reference image                              MG                                    MG + T1            

 

                    AC                                           GA                                     Proposed                   Proposed (Highlighted)            

Fig. 3.9 Comparative analysis for Test image 6 

 

         Original image                     Reference image                                MG                                   MG + T1            

 

                     AC                                         GA                                       Proposed                  Proposed (Highlighted)            

Fig. 3.10 Comparative analysis for Test image 7 
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          Original image                    Reference image                              MG                                  MG + T1            

 
                    AC                                           GA                                     Proposed                  Proposed (Highlighted)            

Fig. 3.11 Comparative analysis for Test image 8 

 

\ 

        Original image                     Reference image                               MG                                    MG + T1            

 
                    AC                                           GA                                      Proposed                  Proposed (Highlighted)            

Fig. 3.12 Comparative analysis for Test image 9 
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         Original image                     Reference image                                MG                                    MG + T1            

 
                     AC                                          GA                                    Proposed                   Proposed (Highlighted)            

Fig. 3.13 Comparative analysis for Test image 10 

 

         Original image                     Reference image                               MG                                   MG + T1            

 

                   AC                                          GA                                      Proposed                   Proposed (Highlighted)            
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Fig. 3.14 Comparative analysis for Test image 11 
 

 

          Original image                     Reference image                              MG                                     MG + T1            

 

                     AC                                         GA                                    Proposed                     Proposed (Highlighted)            

Fig. 3.15 Comparative analysis for Test image 12
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Comprehensive observations from the above images clearly identify that gray matter and white matter 

boundaries are quite evident, bold and contrast enhanced for the proposed scheme as compared to other 

existing algorithms. Weak and proxy edges are also getting eliminated using proposed strategy of edge 

detection. Moreover, the lateral ventricle region boundary is clear and prominent. In brief, the proposed 

algorithm reflects its qualitative supremacy towards prominent object boundary detection from brain MRI 

scans. This leads to trace whole brain tissue loss more accurately and subsequently helps in detecting MCI.  

    In addition to the qualitative discussion and visual impression, performance of the proposed edge 

detection technique is also evaluated in terms of a few quantitative performance parameters namely Figure 

of Merit and Shannon’s Entropy. This has been clearly described in the following section.  

3.4.1    Pratt’s Figure of Merit (FOM) 

FOM is a popularly used technique to verify the efficiency of any edge detector. FOM uses an ideal edge 

map to evaluate the relative difference for different edge detection techniques. It can be defined as [9]:  

𝐹𝑂𝑀 =  
1

max 𝑁𝐼 ,𝑁𝐷 
 

1

1 + 𝜏𝐷𝑖
2  

𝑁𝐷

𝑖=1

       

(3.19)     

where, 𝑁𝐼: number of ideal detected edge points, 𝑁𝐷: number of actual detected edge points,  𝑑𝑖 : distance 

between 𝑖𝑡edge point detected and ideal edge point and 𝜏:  scaling factor with set value of 1/9 [10]. One 

comparative analysis in terms of FOM has been carried out between MG, combination of MG and 

conventional type I fuzzy technique (MG+T1) [4], improved AC based edge detector, GA based edge 

detector and the proposed method. Experimentally obtained value of FOM has been listed in Table 3.2 

below.  

 

Table 3.2:  Comparative analysis in terms of FOM 
 

Edge 

detector 

Test 

image 1 

Test 

image 2 

Test 

image 

3 

Test 

image 

4 

Test 

image 

5 

Test 

image 

6 

Test 

image 

7 

Test 

image 

8 

Test 

image 

9 

Test 

image 

10 

Test 

image 

11 

Test 

image 

12 

MG 0.432 0.421 0.318 0.279 0.346 0.379 0.368 0.310 0.318 0.388 0.370 0.353 

MG+T1 

[23] 
0.454 0.442 0.326 0.291 0.361 0.393 0.382 0.323 0.332 0.403 0.384 0.364 

AC [30] 0.565 0.556 0.380 0.365 0.451 0.441 0.425 0.399 0.416 0.465 0.420 0.448 

GA [31] 0.587 0.611 0.432 0.412 0.494 0.479 0.473 0.447 0.461 0.493 0.496 0.487 

Proposed 

Method 
0.667 0.671 0.498 0.489 0.541 0.545 0.538 0.533 0.534 0.577 0.564 0.539 
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From the entries in Table 3.2, it can be inferred that the proposed technique results in an improvement of 

31% or more over conventional MG which is considered to be the most popular among all existing 

techniques. Corresponding FOM improvement over MG+T1 is calculated as 28% for the test images under 

consideration. It is also seen that proposed method exhibits at least 15% and 9% improvement over the 

techniques proposed in [7] and [8] respectively.     

Performance of the proposed algorithm in terms of FOM rating has also been compared with some recently 

developed fuzzy techniques for edge detection in Table 3.3. While Table 3.2 shows an average 

improvement of 4.21% with MG+T1 FLS over conventional MG for MRI images; Table 3.3 indicates a 

corresponding improvement of 3.18% for standard images. Proposed algorithm, on the other hand, shows 

its supremacy over MG + Type I FLS, MG + Interval Type II FLS and MG + Generalized Type II FLS an 

improvement of 35.2% over conventional MG techniques.  

 

Table 3.3:  Comparative analysis with other edge detectors in terms of FOM 

Edge Detector Image Type 

Percentage 

improvement in FOM 

rating  

MG + Type I FLS Standard image 3.18 

MG + Interval Type 

II FLS 
Standard image 11.57 

MG + Generalized 

Type II FLS 
Standard image 12.14 

Proposed algorithm 
Standard image 32.9 

MRI image 35.2 
 

This experiment has also been run on public large scale brain image data set of suspected MCI subjects and 

the results have been substantiated in Table 3.4. Performance of the proposed algorithm shows a fair 

improvement in terms of FOM as compared to MG, MG + Type I FLS, AC and GA.  

 

Table 3.4:  Comparative analysis on public MRI image sets in terms of FOM 
 

Image  

 Index 

Edge Detector 

MG MG+T1[4] AC [7] GA [8] Proposed Method 

Patient MRI 1 0.4602 0.4754 0.5169 0.5321 0.6181 

Patient MRI 2 0.4571 0.4724 0.5235 0.5478 0.5975 

Patient MRI 3 0.4658 0.4810 0.5440 0.5631 0.6021 

Patient MRI 4 0.4518 0.4672 0.5061 0.5328 0.5917 

Patient MRI 5 0.4570 0.4723 0.5183 0.5591 0.5957 

Patient MRI 6 0.4073 0.4218 0.4684 0.4977 0.5323 

Patient MRI 7 0.4370 0.4520 0.4992 0.5328 0.5757 

Patient MRI 8 0.4054 0.4198 0.4869 0.5108 0.5704 
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Patient MRI 9 0.3852 0.3990 0.4201 0.4645 0.5190 

Patient MRI 10 0.4084 0.4228 0.4864 0.5149 0.5511 

Patient MRI 11 0.4299 0.4454 0.4906 0.5112 0.5613 

Patient MRI 12 0.4170 0.4323 0.4781 0.4990 0.5666 

Patient MRI 13 0.4668 0.4824 0.5324 0.5611 0.6080 

Patient MRI 14 0.4567 0.4727 0.5124 0.5446 0.6094 

Patient MRI 15 0.4207 0.4356 0.4845 0.5119 0.5684 

Patient MRI 16 0.4348 0.4506 0.4893 0.5121 0.5535 

Patient MRI 17 0.4186 0.4338 0.4779 0.5027 0.5467 

Patient MRI 18 0.3663 0.3817 0.4457 0.4923 0.5772 

Patient MRI 19 0.3723 0.3875 0.4368 0.4729 0.5634 

Patient MRI 20 0.3655 0.3809 0.4359 0.4637 0.5705 

Patient MRI 21 0.3438 0.3588 0.3897 0.4231 0.5501 

Patient MRI 22 0.3508 0.3659 0.4125 0.4724 0.5576 

Patient MRI 23 0.3617 0.3769 0.4213 0.4651 0.5628 

Patient MRI 24 0.3540 0.3689 0.4358 0.4711 0.5572 

Patient MRI 25 0.3668 0.3795 0.4597 0.4782 0.5427 

Patient MRI 26 0.4217 0.4351 0.4926 0.5214 0.5732 

Patient MRI 27 0.6042 0.6178 0.6358 0.6502 0.7094 

Patient MRI 28 0.4752 0.4896 0.5478 0.5532 0.6192 

Patient MRI 29 0.4147 0.4272 0.4781 0.5071 0.5549 

Patient MRI 30 0.4148 0.4280 0.4741 0.4956 0.5456 

Patient MRI 31 0.4602 0.4743 0.5086 0.5127 0.5781 

Patient MRI 32 0.4892 0.5033 0.5298 0.5402 0.5963 

Patient MRI 33 0.4728 0.4873 0.5161 0.5441 0.5794 

Patient MRI 34 0.4535 0.4682 0.5149 0.5477 0.5823 

Patient MRI 35 0.4400 0.4553 0.5143 0.5287 0.5847 
 

 

  3.4.2   Shanon’s Entropy  
 

FOM generally compares the detected edge map with an ideal one in which information about weak edges 

does not contain much importance. Shannon‟s entropy, on the other hand, takes care of the problem of 

losing weak edge information. Hence, the proposed edge detection technique has also been tested in terms 

of Shannon‟s Entropy as well, which is defined as [11]:  

𝐻 𝐼 =  − 𝑝𝑖 log2 𝑝𝑖

𝐿−1

𝑖=0

    

(3.20) 

    where I indicates the image or edge map, 𝑝𝑖  represents the probability of a pixel having intensity 𝑖 and L 

signifies the total number of intensity levels.  

Variation of entropy with image index has been shown in Fig. 3.16 below for different edge detection 

techniques under consideration. The plot in Fig. 3.16(a) and Fig. 3.16(b) apprises that proposed method 

exhibits higher value of entropy than reference image and the edge detectors in [7] and [8]. It suggests that 

more information about weak edge can be extracted from the proposed method as compared to [7] and [8]. 

At the same time, entropy values resulting from the proposed method are very close but slightly lower than 
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MG and MG+T1. This guarantees that proxy edge information can be removed by means of proposed 

method in comparison to MG and MG+T1. This exercise has also been carried out for public MRI image 

sets and one such entropy plot has been shown in Fig. 3.17 for the sake of completeness. 

 

 

(a) 

 

 

(b) 

Fig. 3.16 Variation of entropy with image index for (a) Test image 1 and (b) Test image 5 
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Fig. 3.17  Variation of entropy with image index for Patient MRI 34 

 

3.5   Discussion 

In this chapter, a novel method comprising of filtering and fuzzy logic based segmentation algorithm is 

successfully implemented for brain MRI image object boundary detection. The presented topology based 

selection algorithm is developed with a novel fuzzy rule-base and inference system to provide improved 

boundary output. Experimental results show a promising improvement in edge detection and contrast 

enhancement both visually and quantitatively. Capability of presented algorithm in detecting edge 

boundaries for MRI test images has been substantiated. It proves to be useful for early detection of AD 

through more accurate detection of regional boundaries of brain and tracing of abnormal tissue losses. 
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Chapter 4 

A Composite Implementation of Robust 

Morphological Filtering and Self Adaptive Fuzzy 

Clustering for Improved Lateral Ventricle 

Classification 

4.1   Introduction 

The lateral ventricle (LV) region segmentation from brain MRI scans is challenging due to low contrast 

impression, tinny or proxy edges and presence of noise for overlapping regions. Morphological changes of 

LV like hypertrophy are prominently caused by the progression of cerebral cortical atrophy. In this chapter, 

a robust morphological filter is proposed which can eliminate noise, focus lateral ventricle and create an 

optimum estimation of object boundary as well. Subsequent implementation of a novel amalgamation of 

self adaptive fuzzy c-means (FCM) clustering algorithm, active contour without edge (ACWE) algorithm 

and a region growing (RG) method is executed to segregate lateral ventricular region. This unique 

combination of multiple algorithms provides an excellent qualitative improvement over LV region 

segmentation for AD and MCI subjects. Additionally, simulation results of the proposed method are 

evaluated quantitatively with multiple measures where a promising capability of LV segregation from brain 

MRI scans is unveiled. 

 

4.2   Initial Works 

4.2.1   Pre-processing 

Input MRI test images of AD affected subject from ADNI dataset have been taken into our consideration in 

this study. All the input T1 brain MRI images are converted into its corresponding gray scale equivalent. 

The gray scale image 𝐼 hence can be expressed as [1]: 

𝐼 𝑖, 𝑗 =  0.299𝐼𝑅 𝑖, 𝑗 +  0.587𝐼𝐺 𝑖, 𝑗 +  0.114𝐼𝐵 𝑖, 𝑗  

∀𝑖 ∈  1,2,… . . ,𝑁𝑅  𝑎𝑛𝑑𝑗 ∈ {1,2,… . . ,𝑁𝐶} 
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(4.1) 

where 𝐼𝑅 , 𝐼𝐺 , 𝐼𝐵  coefficients represent red, green and blue (RGB) components in input true color image. 

𝑁𝑅  𝑎𝑛𝑑 𝑁𝐶  symbolize the number of rows and columns present in the input image respectively. The hue 

and saturation information present in a RGB image are thus eliminated in (4.1). 

4.2.2    Morphological Filtering 

Morphological filtering (MF) is generally performed with two operations, namely opening and closing. 

Appropriate filtering can be employed to extract important features from a digital image while, at the same 

time, it can also decrease light dark details. Opening and closing are performed with two fundamental 

morphological processes, namely erosion and dilation. One of the most vital challenges for opening and 

closing is to choose appropriate „structuring element‟ (SE) which determines its effectiveness and accuracy. 

Structuring elements are of two types, namely „uniform structuring‟ element and „non uniform structuring 

element‟. 

The set of Euclidian coordinates corresponding to the input MRI scan I eroded with structuring element 

𝑏𝑁𝐹  is given by [2]: 

𝐼 ⊖ 𝑏𝑁𝐹 =  𝑤: 𝑏𝑁𝐹𝑤 ⊆ 𝐼  

(4.2) 

where 𝑏𝑁𝐹𝑤  specifies translation of 𝑏𝑁𝐹  at its origin „w‟, i.e. for any 

𝑤 =  (𝑥,𝑦) , 𝑏𝑁𝐹𝑤  =  {(𝑎, 𝑏)  +  (𝑥,𝑦) ∶  (𝑎, 𝑏)  ∈ 𝑏𝑁𝐹} 

In case the input binary image I is dilated with structuring element 𝑏𝑁𝐹 , the set of euclidian coordinates 

becomes: 

𝐼⨁𝑏𝑁𝐹 =  𝐼𝑤
𝑤∈𝑏𝑁𝐹

 

(4.3) 

where 𝐼𝑤  is any arbitrary pixel of interest at image space.Opening and closing are executed with these two 

fundamental morphological operations. For an input MRI image I and structuring element 𝑏𝑁𝐹 , the opening 

of I can be described as : 

𝐼 ∘ 𝑏𝑁𝐹 =  𝐼 ⊖ 𝑏𝑁𝐹 ⊕ 𝑏𝑁𝐹 =   (𝑏𝑁𝐹𝑤 :𝑏𝑁𝐹𝑤 ⊆ 𝐼) 

(4.4) 

Similarly closing of I with structuring element 𝑏𝑁𝐹is achieved by applying dilation followed by erosion: 

𝐼𝑀𝐹𝜎 • 𝑏𝑁𝐹 =  𝐼𝑀𝐹𝜎 ⊕𝑏𝑁𝐹 ⊖ 𝑏𝑁𝐹 =   𝑤:𝑏𝑁𝐹𝑤 ⊆  𝐼𝑀𝐹𝜎𝑤
𝑤∈𝑏𝑁𝐹

  

(4.5) 
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4.2.3   Normalization of Test Images 

Morphological filtering is followed by the process of normalization before applying fuzzy c-means 

clustering algorithm. In this step, pixel intensity values are scaled over the entire range of image intensity. 

The normalization process is carried out in accordance with the following sequential proceedings: 

i) Considering I as test image matrix, absolute difference between minimum and maximum gray 

scale values are calculated as: 

𝐷𝐼 =   max 𝐼 − min(𝐼)                                                     (4.6) 

ii) Pixel value at any arbitrary location (𝑥,𝑦) is scaled within the range of (0-255) in accordance 

with: 

𝐼 𝑥,𝑦 =    max 𝐼  
255

𝐷𝐼
 −    min 𝐼  

255

𝐷𝐼
  

(4.7) 

4.2.4    Fuzzy C-Means Clustering Algorithm 

Dunn [3] introduced Fuzzy c-means (FCM) clustering algorithm which was further developed by Bezdek 

[4]. It is a dynamic optimization algorithm that creates two or more adjoint clusters in fuzzy space 

depending on associated fuzzy pixel intensity values. Given a finite dataset 𝑋 =  𝑥1, 𝑥2,… , 𝑥𝑛  where n is 

the maximum number of sample point within the set; 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑙 } is an object of „l‟ dimension; „i‟ 

is object sequence;  𝑥𝑖𝑗  is the 𝑗𝑡  property of 𝑖𝑡  object; 𝐶 =  𝐶1,𝐶2,… ,𝐶𝑐  denotes a total 𝑐  number of 

clusters and 𝑉 = {𝑣1, 𝑣2 ,… , 𝑣𝑐}  represents the c number of one dimensional cluster centroids. FCM 

partitions the objects (n measured) into c-clusters through an iterative minimization of objective function 

outlined as: 

𝐽𝑚  𝑈,𝑉 =    𝑢𝑗𝑖
𝑚 𝑥𝑖 − 𝑣𝑗 2

2
𝑛

𝑖=1

𝑐

𝑗=1

  

(4.8) 

where 𝑢𝑗𝑖  is the membership function of 𝑖𝑡  object in 𝑗𝑡  cluster, 𝑈 =  𝑢𝑗𝑖   , 𝑖 = 1,2,… ,𝑛 𝑎𝑛𝑑 𝑗 =

1,2,… , 𝑐 and m is a fuzzy factor which holds value between  1, ∞  and usually set as 2. The symbol  ∙  

expresses the distance between object 𝑥𝑖  and cluster center 𝑣𝑗 . FCM is an iterative clustering method which 

finds the solution of objective function, Jm as follows: 

i) Set for c, m and threshold, 휀 

ii) Initialize partition matrix 𝑈0 

iii) Set for a loop counter 𝑝 = 0. 

iv) At step „t‟, calculate cluster centers 𝑣𝑗
(𝑡)

 as: 
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𝑣𝑗
 𝑡 

=
  𝑢𝑗𝑖

 𝑡 
 
𝑚
𝑥𝑖

𝑛
𝑖=1

  𝑢𝑗𝑖
 𝑡 
 
𝑚

𝑛
𝑖=1

  𝑓𝑜𝑟 𝑗 = 1,2,… , 𝑐 

v) Calculate the membership matrix 𝑈(𝑡+1) and new cluster centers 𝑣𝑖
(𝑡+1)

 

𝑢𝑗𝑖
(𝑡+1)

=

 

 
 
  

 𝑥𝑖 − 𝑣𝑗
(𝑡)
 

2

2

 𝑥𝑖 − 𝑣𝑘
(𝑡)
 

2

2 

1
𝑚−1

𝑐

𝑘=1

 

 
 

−1

 𝑓𝑜𝑟 𝑖 = 1,2,… ,𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑐 

 

 

𝑣𝑖
(𝑡+1)

=
  𝑢𝑗 𝑖

(𝑡+1)
 
𝑚

𝑛
𝑖=1 𝑥𝑖

  𝑢𝑗𝑖
(𝑡+1)

 
𝑚

𝑛
𝑖=1

  𝑓𝑜𝑟 𝑖 = 1,2,… ,𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑐 

 

vi) If max  𝑈(𝑡) −𝑈(𝑡+1) < 휀 then stop;  

else set  𝑡 = 𝑡 + 1 and go to step (iv). 

 

4.2.5    Fuzzy Local Information based C-Means Clustering Algorithm (FLICM) 

Krinidis and Chatzis [5] proposed a novel fuzzy clustering method which incorporates local spatial 

information and gray level information. In FLICM, a novel fuzzy factor 𝐺𝑗𝑖  was introduced which can be 

defined as: 

𝐺𝑗𝑖 =  
1

1 + 𝑑𝑖𝑟
 1 − 𝑢𝑗𝑟  

𝑚
 𝑥𝑟 − 𝑣𝑗 2

2

𝑟𝜖𝑁𝑖
𝑟≠𝑖

 

(4.9) 

where 𝑁𝑖  specifies a local window surrounded to 𝑖𝑡ℎ pixel. In (4.9), 𝑟 is the adjacent neighbor pixel of 𝑖 , 

𝑑𝑖𝑟  is the Euclidian distance between 𝑖 𝑎𝑛𝑑 𝑟 𝑎𝑛𝑑 𝑢𝑗𝑟  represents the membership function of 𝑟 to belong to 

𝑗𝑡ℎ cluster. So the objective function of FLICM incorporates 𝐺𝑗𝑖  and it becomes: 

𝐽𝑚
 𝐹𝐿𝐼𝐶𝑀  𝑈,𝑉 =    𝑢𝑗𝑖

𝑚 𝑥𝑖 − 𝑣𝑗 2

2
+ 𝐺𝑗𝑖  

𝑛

𝑖=1

𝑐

𝑗=1

 

(4.10) 

4.2.6    Active Contour without Edges (ACWE) 

Chan and Vese [6] proposed a boundary detection algorithm for image objects whose edges are likely not 

defined by gradient. In this model, the problem is formulated as “mean-curvature-flow” like evolving 

active contour which is set by curve evolution algorithm and terminated on Mumford-Shah functional 

segmentation conditions. ACWE starts with an initial curve like a square or circle and deforms its contour 
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until object boundary is estimated. Assuming Ω as a bounded open subset of ℝ2 and 𝜕Ω as its boundary, let 

us consider the evolving curve C in Ω is the boundary of open subset 𝜔 of Ω (i.e. 𝜔 ⊂ Ω and 𝐶 = 𝜕𝜔). 

Therefore, the region 𝜔 denotes 𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶) and region Ω\𝜔 denotes 𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶). 

Let us assume that image c0 is composed of two regions of near piecewise-constant intensity values 𝑐0
𝑖  and 

𝑐0
𝑜 . It is also assumed that image object to be detected is expressed by 𝑐0

𝑖  values and its boundary is 𝐶0. 

Hence, it must be stated that 𝑐0 ≈ 𝑐0
𝑖  is valid for inside the object boundary (inside 𝐶0) and 𝑐0 ≈ 𝑐0

𝑜  satisfies 

outside object boundary (outside 𝐶0) condition. Based on energy of test image, the basic „fitting‟ term of 

ACWE is defined as [6]: 

𝐹1 𝐶 + 𝐹2 𝐶 =   𝑐0 𝑥,𝑦 − 𝑐1 
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+   𝑐0 𝑥,𝑦 − 𝑐2 
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒  𝐶 

  

(4.11) 

where 𝑐1𝑎𝑛𝑑 𝑐2 are the inside mean and outside mean of variable curve 𝐶 respectively. Energy function of 

ACWE algorithm is formulated as: 

𝐹 𝑐1 , 𝑐2 ,𝐶 = 𝜇 ∙ 𝐿𝑒𝑛𝑔𝑡ℎ 𝐶  +  𝜗 ∙ 𝐴𝑟𝑒𝑎 𝑖𝑛𝑠𝑖𝑑𝑒 𝐶  + 𝜆1   𝑐0 𝑥,𝑦 − 𝑐1 
2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒 (𝐶)

+  𝜆2   𝑐0 𝑥,𝑦 − 𝑐2 
2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒  𝐶 

                 

(4.12) 

where 𝜇 ≥ 0,𝜗 ≥ 0, 𝜆1,𝜆2 > 0 are constants and 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) is smoothness parameter. By using level set 

method [6], the evolving curve 𝐶(𝑇) is represented through zero level set of Lipschitz function 𝜌 ∶  Ω → ℝ, 

such as: 

 

𝐶 = 𝜕𝜔 =   𝑥,𝑦 ∈ Ω ∶  𝜌 𝑥, 𝑦 = 0 

𝑖𝑛𝑠𝑖𝑑𝑒 𝐶 = 𝜔 =   𝑥,𝑦 ∈ Ω ∶  𝜌 𝑥,𝑦 > 0 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶 = Ω\𝜔 = {(𝑥,𝑦) ∈ Ω ∶  𝜌(𝑥,𝑦) < 0

  

(4.13) 

The function 𝜌 is used to minimize the energy. Now Heaviside function H and one-dimensional Dirac 

measure 𝛿0 are defined as:  

𝐻 𝑧 =  
1, 𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0

  

𝛿0 𝑧 =
𝑑

𝑑𝑧
𝐻 𝑧   

(4.14) 

The energy term becomes: 

𝜆1   𝑐0 𝑥,𝑦 − 𝑐1 
2 ∙  1 −𝐻 𝜌 𝑥,𝑦   𝑑𝑥𝑑𝑦

Ω

+  𝜆2   𝑐0 𝑥,𝑦 − 𝑐2 
2 ∙  1 −𝐻 𝜌 𝑥,𝑦   𝑑𝑥𝑑𝑦 +  𝜇 𝛿0 𝜌 𝑥,𝑦 ∙  ∇ 𝑥,𝑦   𝑑𝑥𝑑𝑦

ΩΩ
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(4.15) 

In order to settle the Eular-Lagrange equation for function, regularized versions of H and 𝛿0 are considered 

as 𝐻𝛼and 𝛿𝛼  as 𝛼 → 0. Consequently the equation of growth becomes: 

𝜕𝜌

𝜕𝑇
= 𝛿𝛼  𝜇 𝑑𝑖𝑣  

∇𝜌

 ∇𝜌 
 + 𝜆1 𝐼 𝑥,𝑦 − 𝑐1 

2 − 𝜆2 𝐼 𝑥,𝑦 − 𝑐2 
2  

                                                                 and         
𝛿𝛼

 ∇𝜌 
∙
𝜕𝜌

𝜌ℵ
= 0 𝑜𝑛 𝜕Ω       

                                                                                 (4.16) 

where ℵ specifies the exterior normal to the boundary 𝜕Ω , and 
𝜕𝜌

𝜌ℵ
 denotes normal derivative of 𝜌 at C.   

 

4.2.7    Region Growing (RG) Algorithm  

Execution of RG starts with graphical insertion of a seed point of the designated region which needs to be 

segmented. For selecting adjacent pixels, a threshold is set which determines the minimum divergence of 

intensity compared to seed point [7]. In the proposed algorithm, RG checks and inserts threshold limited 

pixels to form up the ROI. The limit of boundary for RG is settled by ACWE and robust classified LV is 

obtained. 

Here the mathematical elastration for RG algorithm is abbreviated as [7]:    
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4.3    Proposed Methodology 

In this work, a novel automated segmentation scheme is proposed to segment lateral ventricle of AD 

subject. Proposed method is a sequential combination of different algorithms with necessary alteration and 

advancements. General overview of entire process is demonstrated in Fig. 4.1. Since brain MRI input test 

𝑓 𝑥,𝑦,𝑎,𝑚 =  𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

𝑖+𝑗≤𝑚

 

𝐸 𝑅,𝑎,𝑚 =  [𝑔 𝑥,𝑦 − 𝑓(𝑥,𝑦,𝑎,𝑚)]2

(𝑥 ,𝑦)∈𝑅

 

𝐶𝑖
(𝑘)

= [ 𝑥,𝑦 :  𝑔 𝑥,𝑦 − 𝑓 𝑥,𝑦,𝑎,𝑚  
2

< 휀 𝑎𝑛𝑑  𝑥,𝑦  𝑖𝑠 𝑎 4 − 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑅𝑖
(𝑘)

] 

(1) The process of fitting an appropriate surface over the image data field can be expressed as: 

where 𝑓(𝑥,𝑦) is a smooth graph surface, 𝑎 is coefficient vector, 𝑓(𝑥,𝑦) is the smooth graph surface, 

and 𝑚 is the surface order {1 (Planner), 2 (Biquadratic), 3 (Bicubic), 4 (Biquartic)}.   

The partition the test  image is init iated into seed regions 𝑅𝑖
(0)

 (e.g., spliting the test image in 

preset 𝑋 × 𝑌 regions) where 𝑅 signifies the support region.  

(2) Fit a planner model for every seed region. If the error vector becomes small, accept 𝑅𝑖
(0)

 for the 

same region; otherwise reject 𝑅𝑖
(0)

. 

where 𝑔(𝑥,𝑦) is the reconstructed image.   

(3) To avoid outliers, for each region, figure out all neighbor points that are compatible.  

(4) If there is no compatible point, then increment 𝑚 ; e.g., 𝑚 = 𝑚 + 1 . If 𝑚 > 𝑀 (𝑀 is the 

polynomial order), stop growing 𝑅𝑖
(𝑘)

 further; otherwise, go back to step 3.  

(5) From the newly grown region, 𝑅𝑖
(𝑘+1)

= 𝑅𝑖
(𝑘)

∪ 𝐶𝑖
(𝑘)

, refit the model to 𝑅𝑖
(𝑘+1)

, and compute 

𝐸(𝑅𝑖
 𝑘+1 ,𝑎,𝑚).  

(6) Now calculate the difference error: 

𝜌(𝑘) = 𝐸 𝑅𝑖
 𝑘+1 , 𝑎,𝑚 − 𝐸(𝑅𝑖

 𝑘 ,𝑎,𝑚) 

(7) If 𝜌(𝑘) < 𝑇1, go back to step 3.  

(8) 𝑚 = 𝑚 + 1; if 𝑚 > 𝑀, stop growing the region further. 

(9) Refit the region for the new model 𝑓(𝑥,𝑦,𝑎,𝑚). If the error of fit decreases, consider the new 

model and go back to step 3; otherwise, stop growing the region further.  
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sets are of limited resolution, boundary region estimations should be very specific and overestimation needs 

to be ignored. Hence, MF opening has been employed only so as to avoid the chance of possible 

overestimation. 

 

Fig. 4.1 Proposed block architecture for LV segmentation. 

As an attempt to fetch lateral ventricle domain information from low contrast input T1 MRI dataset in a 

best possible way, a robust non-uniform structuring element 𝑏𝑁𝐹  has been utilized in this study as outlined 

next. 

𝑏𝑁𝐹 =  

 
 
 
 
 
  1   0   1  
  1   0   1  
  0   1   0  
  1   0   1  
  1   0   1   

 
 
 
 

 

(4.17) 

To find the optimum number of clusters (c), a self adaptive FCM is examined with different number of 

clusters in the search range. Each result of FCM execution is then evaluated with a clustering validity index 

which can be expressed as a checking parameter of quality in clustering results and subsequently an 

optimum value of c is finalized. The entire process is constructed in the following steps: 

(i) Find  𝑐𝑚𝑖𝑛 , 𝑐𝑚𝑎𝑥   for the input image space 

(ii) For each integer 𝑘 ∈  𝑐𝑚𝑖𝑛 , 𝑐𝑚𝑎𝑥   and 𝑘 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; run FCM 

(iii) Calculate clustering validity index for k, stack in  𝜗 =  𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡   and search for another value of k 

(iv)  Repeat the steps for entire input domain 

(v) Compare all the values stored in 𝜗 and find out optimum one, 𝑐𝑜𝑝𝑡  

 The rough set of maximum number of clusters 𝑐𝑚𝑎𝑥  and corresponding cluster centers 𝑣𝑜𝑝𝑡  are 

approximated by Density-based-algorithm (DBA). The initial cluster selection procedure of density based 

algorithm is executed by assembling pixels with higher local density surrounded by lower local density and 

relatively large distances with other cluster centroids. The local density ϛ
𝑖
 of object 𝑥𝑖  can be defined as 

[8]: 
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ϛ
𝑖

=  𝑒−𝑑𝑖𝑗
2 /𝑑𝑐

2

𝑛

𝑗=1

  

(4.18) 

where 𝑑𝑖𝑗  is the distance between objects 𝑥𝑖  and 𝑥𝑗  and 𝑑𝑐  is a cutoff distance. DBA sorts the distances 

between any two objects in a descending order and selects 𝑑𝑐  as the corresponding value to the first p% of 

the sorted distances (roughly𝑝 ∈ [2, 5]). The number of initial cluster centers is determined by the choice of 

𝑑𝑐 . Further an optimum number of cluster 𝑐𝑜𝑝𝑡  is settled with the help of proposed fuzzy clustering index.   

A fuzzy clustering validity index makes a tradeoff between compactness and separation which effectively 

helps to obtain an optimal clustering result. The index can be defined as [9]: 

𝑉𝑋𝐵 𝑢, 𝑣 =
 

1
𝑛
   𝑢𝑖𝑗

𝑚 𝑣𝑖 − 𝑥𝑗 
2𝑛

𝑗=1
𝑐
𝑖=1

min
𝑖≠𝑗

 𝑣𝑖 − 𝑣𝑗 
2   

(4.19) 

In (4.19), the numerator finds the average distance from various objects to centroids, which is the 

effective measure of compactness. Similarly, the denominator part finds out the minimum distance between 

any two centroids, measuring the separation. 

A validity-guided re-clustering (VGC) algorithm uses cluster-validity information to guide the clustering 

process. In this process, the initial clustering is estimated by a soft clustering algorithm and then iteratively 

altered by applying split-and-merge operations for clusters. 

Partition modification that results in an improved partition validity index is retained and an optimum 

partition result is obtained. The Bensaid partition index is defined as [10]: 

 

𝑉𝐵 𝑈,𝑉 =   
1
𝑛𝑘  𝑢𝑘𝑖

𝑚 𝑥𝑖 − 𝑣𝑘 
2𝑛

𝑖=1

𝑛𝑘   𝑣𝑗 − 𝑣𝑘 
2𝑐

𝑗=1

𝑐

𝑘=1

  

(4.20) 

Where 𝑛𝑘  is the fuzzy cardinality of the 𝑘𝑡  cluster which is defined as: 

𝑛𝑘 =  𝑢𝑘𝑖

𝑛

𝑖=1

   

(4.21) 

 𝑢𝑘𝑖
𝑚 𝑥𝑖 − 𝑣𝑘 

2𝑛
𝑖=1   represents the 𝑘𝑡  fuzzy cluster variation. The numerator term in (4.20) expresses 

the compactness. Similarly the denominator component   𝑣𝑘 − 𝑣𝑗 
2𝑐

𝑗=1  signifies the separation of fuzzy 

cluster (k) as the sum of distances from k
th

 cluster centroid to the centroids of other (𝑐 − 1) clusters. It is to 

be noted that a lower value of partition index indicates a better partition. As 𝑐 approaches to 𝑛, the distance 

component in compactness factor reduces to a very lower values and tends to zero: 
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lim
𝑐→𝑛

 𝑥𝑖 − 𝑣𝑘 
2 → 0 

(4.22) 

As a whole, the robustness of compactness factor for determining the optimal number of clusters is lost 

as 𝑐 approaches towards 𝑛. An improved Bensaid index, formulated as Ren index, can be defined as [8]: 

𝑉𝑅 𝑈,𝑉 =   
1
𝑛𝑘  𝑢𝑖𝑘

𝑚 𝑥𝑖 − 𝑣𝑘 
2 + (1/𝑐) 𝑣𝑘 − 𝑣  2𝑛

𝑖=1

(1/(𝑐 − 1))  𝑣𝑗 − 𝑣𝑘 
2𝑐

𝑗=1

𝑐

𝑘=1

 

(4.23) 

The imported second term in numerator of (4.23) works as a punishing function, 휁 = (1/𝑐) 𝑣𝑘 − 𝑣  2. It 

adds cluster averaged distance from 𝑘𝑡  cluster centroid (𝑣𝑘) to the average of all other cluster centroids 

( 𝑣 =
1

𝑐
 𝑣𝑐 ) with the existing compactness factor in (4.20). This can eliminate the monotonically 

decreasing tendency as the number of clusters is increased to 𝑛. The denominator of (4.23) represents 

separation function as the mean distance from the 𝑘𝑡  cluster centroid to the other cluster centroids.  

The proposed algorithm is dedicatedly designed for segmenting LV from T1 gray converted MRI scans 

where different object regions have very close pixel weights. Additionally the determination of lateral 

ventricle boundaries through optimum selection of 𝑉𝑅(𝑈,𝑉) plays a crucial role to detect dimensional 

changes. The settlement of LV boundary deserves utmost priority as it conveys disease progress 

information for AD. The punishing function, 휁 in (4.23) should contribute higher value as 𝑐 approaches 𝑛 

and contribute nominal as 𝑐 ≪ 𝑛. The 𝑘𝑡  cluster punishing function contribution is reflected in 𝑉𝑅(𝑈,𝑉) 

through 휁 in (4.23). As the 𝑘𝑡  clustering effect is calculated in a single instance, aggregating average 

values in clustering index estimation is found out to be less accurate. Instead of 𝑣 , a modified robust cluster 

center weighting component is proposed as:  

𝑣𝑘 =   1 𝑘  𝑣𝑐

𝑘

𝜌=1

  

(4.24) 

where 𝜌 = 1, 2, 3,… ,𝑘  is an arbitrary counter variable, 1 𝑘  is an averaging factor for summed cluster 

centroids counted upto 𝑘𝑡 cluster. Here 𝑣𝑘  provides an increasing weight at proposed partition index, 

𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷  𝑈,𝑉  as  𝑘 → 𝑛. The modified punishing index 휁𝑘  thus becomes: 

휁𝑘 =  
1

𝑘
  𝑣𝑘 −  (1 𝑘 ) 𝑣𝑐

𝑘

𝜌=1

  

2

 

(4.25) 

Interestingly, a multiplying factor of (1 𝑘)  is used in (4.25) instead of (1 𝑐 ) in (4.23) so as to strengthen 

the contribution of  휁𝑘   in 𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷  𝑈,𝑉  for different values of  𝑘. However, the proposed multiplying 
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factor contributes higher weight in 휁𝑘  and also keeps robustness of  𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷  𝑈,𝑉   as the ratio of 

compactness and separation is calculated for single instances of  𝑘. Now the separation function  𝜉𝑠  is 

proposed to be: 

𝜉𝑠 =   𝑣𝑘 − 𝑣𝑗 
2

 
𝑐

𝑗=1
 

(4.26) 

   𝜉𝑠  in (4.26) specifies the sum of distances from 𝑘𝑡  cluster centroid to the centroids of other (𝑐 − 1) 

clusters. Eliminating the multiplying factor (1 (𝑐 − 1))  in (4.26) effectively tends to increase 

𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷 (𝑈,𝑉). This increment minimizes the partition index quality, but averaging 𝜉𝑠 with (1 (𝑐 − 1) ) 

is not found justified as the ratio of compactness and separation is calculated for single value of  𝑘. On the 

other hand,  휁𝑘   in 𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷 (𝑈,𝑉) will tend to increase the value of compactness. Now the proposed 

fuzzy clustering index is defined as: 

𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷  𝑈,𝑉 =  
1 𝑛𝑘  𝑢𝑖𝑘

𝑚 𝑥𝑖 − 𝑣𝑘 
2 + 휁𝑘 

𝑛
𝑖=1

𝜉𝑠

𝑐

𝑘=1

=   
1 𝑛𝑘  𝑢𝑖𝑘

𝑚 𝑥𝑖 − 𝑣𝑘 
2 + (1/𝑘) 𝑣𝑘 − (1 𝑘  𝑣𝑐

𝑘
𝜌=1 ) 

2𝑛
𝑖=1

  𝑣𝑘 − 𝑣𝑗  
2𝑐

𝑗=1

𝑐

𝑘=1

 

(4.27) 

The ratio of compactness function and separation function represents the clustering effect of the 𝑘𝑡  cluster. 

The summation of clustering effects for all clusters represents the clustering validity index. Lower value of 

clustering index indicates better clustering effect and the corresponding c is considered to be the optimum 

number of clusters. Proposed separation factor in (4.27) tends to decrease the overall clustering index 

which ensures its constancy. Additionally, 휁𝑘  tends to increase 𝑉𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 (𝑈,𝑉) in (4.27) which preserves 

robustness of proposed clustering index and provides higher order segmentation accuracy for low contrast 

brain MRI scans of cerebral atrophy subject. Proposed clustering algorithm has been summarized next: 
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______________________________________________________________________________________________ 

Algorithm 4.1: Proposed algorithm  

______________________________________________________________________________________________ 

Input:    MRI of AD subject, s, 𝐼𝑚𝑎𝑥  𝑎𝑛𝑑 휀 

Output:  𝐽𝑏𝑒𝑠𝑡  , 𝑐𝑜𝑝𝑡  , 𝑈𝑏𝑒𝑠𝑡  

 

  𝐷 =   𝑑𝑖𝑗  𝑛×𝑛
 ; 

  𝑑𝑐 = 𝑑𝑖𝑠_𝑐𝑢𝑡𝑜𝑓𝑓(ϛ) ;   /* quantify the cutoff distance𝑑𝑐  * / 

  ϛ =  (ϛ
𝑖
)𝑛  ; 

  idx = arg(sort(ϛ , descent)) ;   /* determine the number of objects corresponding to sortedϛ */ 

  k = 1 ; 

  cl = (-1)1×n ;                             /* cluster number that each object belongs to,  starting from -1. */ 

 for 𝑖 = 1 to 𝑛 − 1 do 

if 𝑐𝑙𝑖𝑑𝑥 𝑖 ! = −1 && #{𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑥𝑖𝑑𝑥 𝑖 > 1} then         /* 𝑥𝑖𝑑𝑥 𝑖does not belong to any cluster and the  

number of its neighbors is greater than 1. */ 

                                 𝑣𝑘 = 𝑥𝑖𝑑𝑥 𝑖  ; 

                                     for 𝑗 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥𝑖𝑑𝑥 𝑖) do 

             𝑐𝑙𝑗 = 𝑘 ; 

                     𝑘 = 𝑘 + 1 ; 

                                          𝑐𝑚𝑎𝑥 = 𝑘 ; 

 

                                          𝑓𝑜𝑟 𝑘𝑛 = 2 𝑡𝑜 𝑐𝑚𝑎𝑥  do 

              𝑡 = 0 ;                             /* the current iteration */ 

                      𝑉𝑘𝑛
(𝑡)

= (𝑣𝑖)𝑘𝑛  ;        /* first kn cluster centroids of V */ 

                       𝑈𝑘𝑛
(𝑡)

= (𝑢𝑖𝑘
(𝑡)

)𝑛×𝑘𝑛  ; 

                    𝐽𝑘𝑛
(𝑡)

= 𝑉𝑃𝑅𝑂𝑃𝑂𝑆𝐸𝐷 (𝑈𝑘𝑛
 𝑡 ,𝑉𝑘𝑛

(𝑡)
);        /* Fetch clustering validity index for first kn cluster 

centroids */ 

            while  𝑡 == 0||𝑡 < 𝐼𝑚𝑎𝑥 &&  𝐽𝑘𝑛
 𝑡 − 𝐽𝑘𝑛

 𝑡−1 
 > 휀 do 

                      Update 𝑉𝑘𝑛
(𝑡)

 ; 

                        Update 𝑈𝑘𝑛
(𝑡)

 ; 

                       Update 𝐽𝑘𝑛
(𝑡)

 ; 

                        𝑡 = 𝑡 + 1 ; 

                   𝐽𝑚𝑖𝑛𝑘𝑛 = 𝑚𝑖𝑛𝑖=1
𝑡 (𝐽𝑘𝑛

(𝑖)
) ; 

                 𝑖𝑑𝑥 = 𝑎𝑟𝑔(𝑚𝑖𝑛𝑖=1
𝑡 (𝐽𝑘𝑛

(𝑖)
)) ; 

                   𝑈𝑚𝑖𝑛 𝑘𝑛 = 𝑈𝑘𝑛
(𝑖𝑑𝑥 )

 ; 

                    𝐽𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛𝑘𝑛=2
𝑐𝑚𝑎𝑥 (𝐽𝑚𝑖𝑛 𝑘𝑛 ) ;       /* best value of clustering validity index */ 

                𝑐𝑜𝑝𝑡 = 𝑎𝑟𝑔(𝐽𝑏𝑒𝑠𝑡 ) ;                   /* optimum number of cluster centers */ 

          𝑈𝑏𝑒𝑠𝑡 = 𝑈𝑚𝑖𝑛 𝑐𝑜𝑝𝑡
 ; 

     end while; 

         end for; 

                                        end for; 

                            end if; 

        end for; 

____________________________________________________________________________________________ 
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4.4    Simulation Results 

Superiority of the proposed technique is evaluated with a number of T1 brain MRI test images of AD 

subject. All these test images have been collected from ADNI dataset. Amongst a large test set, five such 

images with different acquisition plane and MRI slice are demonstrated here for the purpose of comparison. 

Proposed algorithm is executed in MATLAB R2020a platform with core i5 processor @ 3.60GHz, 8 GB 

RAM and Windows 10, 64 bit operating system.  

 

Table 4.1 Imaging parameters of ADNI Test images 1-5. 

 TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 

Type details T2 FLAIR PD/T2 FSE MP-RAGE MP-RAGE MP-RAGE MP-RAGE 

Acquisition plane Axial Axial Sagittal Coronal Axial Axial 

Slice 18 of 35 17 of 35 85 of 170 128 of 256 128 of 256 156 of 256 

ADNI image ID 569634 569634 116582 116582 116582 13722 

 

 

 
Fig.4.2 Simulation results of proposed algorithm on Test image 1 (a) original image, (b) MF+FCM, (c) 

MF+FCM+ACWE, (d) MF+FCM+ACWE – LV segmented. 
 

 
Fig.4.3 Simulation results of proposed algorithm on Test image 2 (a) original image, (b) MF+FCM, (c) 
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MF+FCM+ACWE, (d) MF+FCM+ACWE – LV segmented. 
 

 
Fig.4.4 Simulation results of proposed algorithm on Test image 3 (a) original image, (b) MF+FCM, (c) 

MF+FCM+ACWE, (d) MF+FCM+ACWE – LV segmented. 
 

 
Fig.4.5 Simulation results of proposed algorithm on Test image 4 (a) original image, (b) MF+FCM, (c) 

MF+FCM+ACWE, (d) MF+FCM+ACWE – LV segmented. 

 

 

Fig.4.6 Simulation results of proposed algorithm on Test image 5 (a) original image, (b) MF+FCM, (c) 

MF+FCM+ACWE, (d) MF+FCM+ACWE – LV segmented. 

 

It is clearly seen that composite implementation of morphological filtering with FCM clustering algorithm 

eliminates majority of tinny and proxy edges while it retains major edges. Form the simulated results of 

TEST IMAGE_01 and TEST IMAGE_02; it is evident that gray matter and white matter fine curvatures are 

mostly eliminated while major ones have been kept on hold in test results. Experimental result mostly helps 

to concentrate and focus only on ROI which is the ventricular region in this case. As far as the simulation 

results are concerned, entire ventricular object components appear as connected region which further helps 

to estimate gross area for the particular MRI slice. It can also be apprehended from simulated results of 
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TEST IMAGE_03, TEST IMAGE_04 and TEST IMAGE_05 that LV is classified with major and prominent 

object boundaries. Thus segmentation of LV is achieved with clinically acceptable higher degree of 

accuracy. 

As the proposed algorithm focuses on ventricular information and represents it as a connected fuzzy 

clustered dataset, Structural Similarity Index Measure (SSIM), Jaccard Index (JI) and Pratt’s Figure of 

Merit (FOM) [11] are found to be best suitable for quantitative analysis. In addition to this, test outcomes 

of the proposed method are cross analyzed in terms of Shanon’s Entropy. In particular, most of the 

quantitative analyzers compare test results with dedicated reference sets. Unlike JI or FOM, Shanon’s 

Entropy calculates a statistical measure of randomness that is used to characterize the texture of test 

images. Numerical outcomes resulting from this comparison have been illustrated in Table 4.1 

To verify the efficiency of the proposed method, test image classification is compared with several other 

state-of-the-art clustering algorithms like FGFCM_S1 [12], FGFCM_S2 [12], FRFCM [13], ARKFCM 

[14], EnFCM [15], DSFCM_N [16], FCM_S1 [17] and FCM_S2 [17] along with FCM [17].     

 

 
Fig.4.7 LV segmentation comparison of different clustering algorithm for Test image 1 (a) FGFCM_S1, (b) 

FGFCM_S2, (c) FRFCM, (d) ARKFCM, (e) EnFCM, (f) DSFCM_N, (g) FCM_S1, (h) FCM_S2, (i) PROPOSED 
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Fig.4.8 LV segmentation comparison of different clustering algorithm for Test image 2 (a) FGFCM_S1, (b) 

FGFCM_S2, (c) FRFCM, (d) ARKFCM, (e) EnFCM, (f) DSFCM_N, (g) FCM_S1, (h) FCM_S2, (i) PROPOSED 
 

 
Fig.4.9 LV segmentation comparison of different clustering algorithm for Test image 3 (a) FGFCM_S1, (b) 

FGFCM_S2, (c) FRFCM, (d) ARKFCM, (e) EnFCM, (f) DSFCM_N, (g) FCM_S1, (h) FCM_S2, (i) PROPOSED 
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Fig.4.10 LV segmentation comparison of different clustering algorithm for Test image 4 (a) FGFCM_S1, (b) 

FGFCM_S2, (c) FRFCM, (d) ARKFCM, (e) EnFCM, (f) DSFCM_N, (g) FCM_S1, (h) FCM_S2, (i) PROPOSED 
 

 
Fig.4.11 LV segmentation comparison of different clustering algorithm for Test image 5 (a) FGFCM_S1, (b) 

FGFCM_S2, (c) FRFCM, (d) ARKFCM, (e) EnFCM, (f) DSFCM_N, (g) FCM_S1, (h) FCM_S2, (i) PROPOSED 
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Table 4.2 Comparative analysis in terms of SSIM, JI and FOM 

  SSIM JI FOM 

TEST 

IMAGE_01 

FGFCM_S1 0.7620 0.5765 0.5935 

FGFCM_S2 0.7799 0.6068 0.6333 

FRFCM 0.7575 0.5868 0.5709 

ARKFCM 0.7532 0.5739 0.5693 

EnFCM 0.7771 0.6144 0.6252 

DSFCM_N 0.7844 0.6510 0.6325 

FCM_S1 0.7458 0.5497 0.5498 

FCM_S2 0.7529 0.5828 0.5692 

PROPOSED 0.8094 0.6525 0.6902 

TEST 

IMAGE_02 

FGFCM_S1 0.7881 0.6574 0.6360 

FGFCM_S2 0.7984 0.7130 0.6629 

FRFCM 0.7791 0.6415 0.6176 

ARKFCM 0.7406 0.5469 0.5559 

EnFCM 0.7652 0.6008 0.5792 

DSFCM_N 0.8145 0.7163 0.7084 

FCM_S1 0.7764 0.6305 0.6076 

FCM_S2 0.7788 0.6485 0.6139 

PROPOSED 0.8309 0.8008 0.7554 

TEST 

IMAGE_03 

FGFCM_S1 0.7643 0.5081 0.5297 

FGFCM_S2 0.7663 0.5079 0.5344 

FRFCM 0.7543 0.4968 0.4997 

ARKFCM 0.7606 0.5244 0.5213 

EnFCM 0.7740 0.5364 0.5533 

DSFCM_N 0.7648 0.5127 0.5300 

FCM_S1 0.7342 0.4601 0.4558 

FCM_S2 0.7456 0.4397 0.4857 

PROPOSED 0.7951 0.6156 0.6052 

TEST 

IMAGE_04 

FGFCM_S1 0.7601 0.5502 0.5449 

FGFCM_S2 0.7687 0.5682 0.5651 

FRFCM 0.7567 0.5143 0.5330 

ARKFCM 0.7796 0.5808 0.5918 

EnFCM 0.7791 0.6116 0.5889 

DSFCM_N 0.7897 0.6199 0.6158 

FCM_S1 0.7638 0.5242 0.5525 

FCM_S2 0.7713 0.5895 0.5717 

PROPOSED 0.7940 0.6555 0.6333 

TEST 

IMAGE_05 

FGFCM_S1 0.7495 0.6462 0.6377 

FGFCM_S2 0.7585 0.6507 0.6546 

FRFCM 0.7618 0.6443 0.6578 

ARKFCM 0.7538 0.6324 0.6465 

EnFCM 0.7461 0.6095 0.6318 

DSFCM_N 0.7795 0.7015 0.6974 

FCM_S1 0.7549 0.6320 0.6485 

FCM_S2 0.7647 0.6596 0.6674 

PROPOSED 0.8064 0.7380 0.7493 

 

Looking at the entries of Table 4.2, it can be inferred that the proposed algorithm results in an SSIM 
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index improvement of 3.18% to 8.52% over other conventional fuzzy clustering techniques for TEST 

IMAGE_01. Corresponding SSSIM improvement of 2.01% to 12.19% for TEST IMAGE_02, 2.72% to 

8.29% for TEST IMAGE_03, 0.54% to 4.92% for TEST IMAGE_04 and 3.45% to 8.08% for TEST 

IMAGE_05 had also been identified. Improvement quotients in TEST IMAGE_03 and TEST IMAGE_04 are 

comparatively less as the LV appears in smaller volume. As far as the improvement in terms of JI index is 

concerned, it varies from 0.23% to 18.70% for TEST IMAGE_01, 11.79% to 46.42% for TEST IMAGE_02, 

14.76% to 40% for TEST IMAGE_03, 5.74% to 27.45% for TEST IMAGE_04 and 5.20% to 21.08% for 

TEST IMAGE_05 respectively.  

Finally, the improvement in terms of FOM is calculated. It is found that the FOM improvement ranges 

from 8.98% to 25.53%, from 6.63% to 35.88%, from 9.38% to 32.77%, from 2.84% to 18.81% and from 

7.44% to 18.59% for TEST IMAGE_01 to TEST IMAGE_05 respectively. The improvement quotient in 

TEST IMAGE_04 is comparatively less as the LV appears in smaller volume. The proposed method, 

therefore, fairly segments LV as observed in Fig. 4.7 to Fig. 4.11.  

In brief, it can be concluded from Table 4.1 that proposed method exhibits noticeable improvement in 

terms of SSIM, JI and FOM measures. Advanced methods have been reported in recent years which have 

introduced significant improvements in detection of various stages of Alzheimer‟s disease [18, 19]. It can 

also be inferred that proposed method yields better response in comparison with other fuzzy c-means 

clustering algorithms in terms of quantitative parameters. In most of the cases, LV is found to be 

represented by a small area compared to gray matter or white matter or total volume of the brain image. 

Variation of entropy with image index has been shown in Fig. 4.12 below for nine different types of fuzzy 

c-means clustering methods along with the proposed one. Shanon‟s entropy reveals the information content 

of the test image. The higher entropy response for proposed method is achieved due to the containment of 

major boundary edge contours or prominent regions. The fluctuations present in the entropy plot reflect 

discontinuity in image objects. A higher value of entropy can be achieved due to minor or proxy edge 

boundary inclusiveness. Similarly lower entropy can reflect loss of major boundary edge contours or 

prominent regions.   
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Fig.4.12  Entropy plot for: (a) Test image 1, (b) Test image 2, (c) Test image 3, (d) Test image 4, (e) Test image 5 

 

To substantiate the ability of proposed algorithm for classifying HC, MCI and AD in terms of segmented 

LV, a rigorous test is conducted that provides the LV area information. Simulated results are demonstrated 

in Table 4.3 for fifty standard ADNI images of HC, MCI and AD subjects. These results are subsequently 

plotted in Fig. 4.13 where a clear segregation is observed in between HC, MCI and AD.   

Table 4.3 Comparative analysis in terms of SSIM, JI and FOM 

Index HC MCI AD 

1_LV 1.8154e+05 1.9452e+05 194312 

2_LV 181160 1.9548e+05 1.9451e+05 

3_LV 1.7872e+05 195617 1.9465e+05 

4_LV 1.8192e+05 1.9567e+05 1.9456e+05 

5_LV 1.8042e+05 1.9162e+05 1.9441e+05 

6_LV 1.7899e+05 1.8954e+05 1.9418e+05 
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7_LV 1.8135e+05 1.9254e+05 194696 

8_LV 180381 193285 1.9530e+05 

9_LV 1.7982e+05 1.9472e+05 1.9580e+05 

10_LV 1.8128e+05 195501 1.9593e+05 

11_LV 1.8053e+05 1.9571e+05 1.9593e+05 

12_LV 1.8072e+05 195462 1.9715e+05 

13_LV 179275 1.9465e+05 1.9787e+05 

14_LV 1.7866e+05 1.9333e+05 1.9850e+05 

15_LV 1.7904e+05 1.9246e+05 1.9881e+05 

16_LV 1.7978e+05 1.9091e+05 1.9902e+05 

17_LV 179199 1.9059e+05 199147 

18_LV 1.8005e+05 1.9074e+05 1.9927e+05 

19_LV 1.8030e+05 1.9081e+05 1.9924e+05 

20_LV 178999 1.9122e+05 1.9929e+05 

21_LV 1.8039e+05 1.9136e+05 199228 

22_LV 1.8072e+05 1.9500e+05 1.9913e+05 

23_LV 1.8061e+05 1.9548e+05 1.9736e+05 

24_LV 1.8252e+05 1.9604e+05 1.9809e+05 

25_LV 1.8308e+05 1.9027e+05 1.9851e+05 

26_LV 180262 1.9042e+05 1.9865e+05 

27_LV 1.8219e+05 1.9103e+05 1.9868e+05 

28_LV 1.8049e+05 1.9181e+05 1.9868e+05 

29_LV 1.8009e+05 1.9299e+05 1.9451e+05 

30_LV 1.8029e+05 1.9287e+05 1.9457e+05 

31_LV 1.8282e+05 192739 1.9380e+05 

32_LV 1.7975e+05 1.9237e+05 1.9441e+05 

33_LV 1.7943e+05 1.9187e+05 1.9474e+05 

34_LV 1.8239e+05 1.9126e+05 1.9495e+05 

35_LV 1.7952e+05 1.9055e+05 194991 

36_LV 1.7955e+05 192762 1.9416e+05 

37_LV 1.8140e+05 1.9358e+05 1.9390e+05 

38_LV 1.8122e+05 1.9355e+05 1.9421e+05 

39_LV 1.7986e+05 1.9409e+05 1.9425e+05 

40_LV 1.8111e+05 1.9503e+05 1.9413e+05 

41_LV 1.8078e+05 1.9371e+05 194766 

42_LV 179682 1.9331e+05 1.9616e+05 

43_LV 1.7927e+05 1.9459e+05 1.9664e+05 

44_LV 1.7900e+05 1.9881e+05 2.1006e+05 

45_LV 180682 1.9981e+05 2.1064e+05 

46_LV 1.8030e+05 2.0401e+05 2.1128e+05 

47_LV 180480 1.9879e+05 211906 

48_LV 1.8281e+05 1.9364e+05 2.1507e+05 

49_LV 1.8181e+05 192764 2.1628e+05 

50_LV 1.8076e+05 1.9509e+05 2.1692e+05 
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Fig.4.13 Plot of area information for fifty ADNI images each for HC, MCI and AD

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

1
2 3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23
2425

26
2728

29
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48
49 50

HC

MCI

AD



 

 

76 

 

4.5    Discussion  

    In this chapter, a novel combination of a robust morphological image filtering and self 

adaptive fuzzy c means clustering algorithm is proposed and implemented. The presented 

method is designed to segregate lateral ventricle form low contrast brain MRI scans of cerebral 

atrophy subjects. Experimental results exhibit improved segmentation of ventricular regions both 

visually and quantitatively. Higher entropy response of the presented method identifies that the 

prominent or major regional boundary information is contained in the output results. The 

improved quantitative measures indicate that the false or proxy edge detection is avoided. The 

capacity of proposed method to segregate HC, MCI and AD by LV area information has also 

demonstrated successfully. With the proper implementation of proposed method, LV appears as 

a single connected region where selection of appropriate object boundary is ensured. This 

process leads to detect minor changes due to early intervention of AD.  
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Chapter 5 

An Adaptive Neighbor Constrained 

Deviation Sparse Variant Fuzzy C-Means 

Clustering Algorithm for Brain MRI of AD 

Subject 

5.1   Introduction 

Progression of early Alzheimer's disease (AD), the mild cognitive impairment (MCI) bears a 

close proximity with the tissue loss in certain regions of brain, especially in medial temporal lobe 

(MTL). For taking appropriate medical intervention, MCI can be traced by diagnosing the 

structural changes in brain MRI scans with advanced fuzzy c-means clustering algorithm. In this 

chapter, initially a very low intensity rician noise is imposed on brain MR scans of AD subject 

that too sparsity is incorporated in the clustering method. A novel method of neighbor pixel 

constrained fuzzy c-means clustering strategy is implemented where topology based selection of 

parsimonious neighbor pixel is automated. The adaptability in selection of neighbor pixel class 

provides more accurate object edge boundary which outperforms other clustering output. The 

proposed adaptive neighbor constrained deviation sparse variant fuzzy c-means clustering 

(AN_DsFCM) can withhold incorporated sparsity constraints. Experimental results are compared 

with several state of the art fuzzy clustering methods for test MRI scans. Visual study and 

statistical measures are evaluated to meet image processing and clinical neurophysiology 

standards. It has been proved that the performance of AN_DsFCM is significantly better than 

other clustering methods. 
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5.2   Initial Works 

5.2.1   Fuzzy C-means (FCM) 

Let us consider a finite data set 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑚) where  each object 𝑥𝑗  is an l- dimensional 

vector. FCM segregates m patterns or objects into c number of clusters through an iterative 

minimization process. The objective function of the FCM is represented as shown below [1]: 

𝐽𝑚
𝐹𝐶𝑀 𝑈,𝑉 =   𝑢𝑖,𝑗

𝑟  𝑥𝑖 − 𝑣𝑗 2

2
𝑚

𝑖=1

𝑐

𝑗=1

  

(5.1) 

Where 𝑈 =  𝑢𝑖𝑗  , 𝑗 = 1,… , 𝑐 and 𝑖 = 1,… ,𝑚 represents the membership separation matrix with 

the constraint  𝑢𝑖𝑗 = 1𝑐
𝑗=1  for all 𝑖 = 1,… ,𝑚;𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑐}  is the vector for cluster 

center; r (>1) is called the fuzzy factor and is generally set to 2. FCM uses an alternative 

optimization process to achieve optimal condition such as:  

𝑈(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
 𝐹𝐶𝑀 

(𝑈,𝑉(𝑡)) 

(5.2) 

𝑉(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
 𝐹𝐶𝑀 (𝑈 𝑡+1 ,𝑉) 

(5.3) 

where t signifies iteration number. FCM randomly initializes U
0
, V

0
 and updates U and V 

alternatively till convergence. The membership partition or separation matrix and the vector of 

cluster center are obtained by using Langrage multiplier theorem as follows:                 

𝑢𝑖𝑗
(𝑡+1)

=

 

 
 
  

 𝑥𝑖 − 𝑣𝑗
(𝑡)
 

2

2

 𝑥𝑖 − 𝑣𝑘
(𝑡)
 

2

2 

1
𝑚−1

𝑐

𝑘=1

 

 
 

−1

  

(5.4) 
 

𝑣𝑗
(𝑡+1)

=
  𝑢𝑖𝑗

(𝑡+1)
 
𝑚

𝑛
𝑖=1 𝑥𝑗

  𝑢𝑖𝑗
(𝑡+1)

 
𝑚

𝑛
𝑖=1

   

(5.5) 

FCM provides better result for noise free data. However, it is unable to give proper cluster to 

data associated with artifacts such as noise and outliers. Due to lack of spatial information, FCM 

is generally sensitive to noise. 
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5.2.2   Modified FCM 

A bias correction fuzzy C means method is proposed by Ahmed et al. [2] where a bias field in 

FCM for clustering of the data is used. The objective function is defined as follows: 

𝐽𝑚
 𝐵𝐶𝐹𝐶𝑀  𝑈,𝑉,𝛽 =   𝑢𝑖𝑗

𝑚 𝑥𝑗 − 𝛽𝑗 − 𝑣𝑖 2

2
+
𝛼

𝑁𝑅
  𝑢𝑖𝑗    𝑥𝑟 − 𝛽𝑗 − 𝑣𝑖 2

2

𝑟𝜖𝑁𝑤

  

𝑁

𝑖=1

𝑐

𝑗=1

𝑁

𝑖=1

𝑐

𝑗=1

 

(5.6) 

where 𝑁𝑤  is the cardinality of the local window used, 𝛼 is a smoothing parameter, 𝛽 and 𝛽𝑟  are 

estimated additive bias field for pixel 𝑖 and its neighbor pixel 𝑟 respectively. This method does 

not use the sparsity on 𝛽𝑗 , and hence makes the estimation unreasonable and unstable.  

5.2.3    Fuzzy Local Information c-means Method (FLICM) 

Krinidis and Chatzis proposed the robust fuzzy local information c means method (FLICM) [3]. 

They introduced a novel fuzzy factor 𝐺𝑖𝑗  which is defines as:   

𝐺𝑖𝑗 =  
1

(1 + 𝑑𝑗𝑟 )
(1 − 𝑢𝑖𝑟)𝑚 𝑥𝑟 − 𝑣𝑖 2

2 

𝑟𝜖𝑁𝑤

 

(5.7) 

where 𝑁𝑤  is the local window for central pixel 𝑗 and 𝑟 is the neighbor pixel around 𝑗. 𝑑𝑗𝑟  is the 

Eucledian distance between j and r. 𝑢𝑖𝑟  represents the membership function for neighbor pixel 𝑟 

to belong to the 𝑖-th cluster. The objective function along with 𝐺𝑖𝑗  is given below: 

𝐽𝑚
 𝐹𝐿𝐼𝐶𝑀  𝑈,𝑉,𝛽 =   [𝑢𝑖𝑗

𝑚 𝑥𝑗 − 𝑣𝑖 2

2
+ 𝐺𝑖𝑗 ]

𝑛

𝑖=1

 

𝑐

𝑗=1

 

(5.8) 

The FLICM is appropriate for image affected by noise or outliers. The fuzzy factor 𝐺𝑖𝑗  remains 

as constant in each iterative step of the framework if the neighbor membership function 𝑢𝑖𝑟  

interacts with 𝑢𝑖𝑗 . Some recent studies suggest that iterative updating formula of FLICM does 

not have enough ability to minimize the objective function [3].  
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5.2.4    Deviation Sparse Fuzzy C-Mean Clustering (DSFCM) 

Yuxuan Zhag [4] proposed the Deviation Sparse Fuzzy C-Mean Clustering (DSFCM) by 

introducing sparse. It is seen that interference generally occurs during acquisition and 

transmission of data. As a matter of fact, the measured data vector 𝑥∆𝑗  deviates from its 

theoretical value 𝑥𝑗 . The difference between 𝑥𝑗  and 𝑥∆𝑗  is called error and represented as 𝑒𝑗 . So 

𝑥∆𝑗  can be written as  

𝑥∆𝑗 = 𝑥𝑗 − 𝑒𝑗  

(5.9) 

By introducing sparsity on deviation matrix E and utilizing 𝑥∆𝑗  for clustering in FCM, the 

objective function of DSFCM is defined as follows: 

𝐽𝑚
 𝐷𝑆𝐹𝐶𝑀 

 𝑈,𝑉,𝛽 =   𝑢𝑖𝑗
𝑚 𝑥𝑗 − 𝑒𝑗 − 𝑣𝑖 2

2
+  𝜆𝑞 𝐸𝑝 𝑞

𝑞
𝑙

𝑝=1

𝑛

𝑖=1

  

𝑐

𝑗=1

 

(5.10) 

expanding the above equation: 

𝐽𝑚
 𝐷𝑆𝐹𝐶𝑀 

 𝑈,𝑉,𝛽 =   𝑢𝑖𝑗  𝑥𝑗 − 𝑒𝑗 − 𝑣𝑖 2

2
+  𝜆𝑞  𝑒𝑗𝑝  𝑞

𝑞
𝑛

𝑖=1

𝑙

𝑝=1

𝑛

𝑖=1

  

𝑐

𝑗=1

 

(5.11) 

Optimization of the DSFCM is carried out like FCM. The optimal condition is obtained as: 

𝑈(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
 𝐷𝑆𝐹𝐶𝑀 

(𝑈,𝑉 𝑡 ,𝐸(𝑡)) 

(5.12) 

𝑉(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
 𝐷𝑆𝐹𝐶𝑀 

(𝑈 𝑡+1 ,𝑉,𝐸𝑡) 

(5.13) 

𝐸(𝑡+1) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑚
 𝐷𝑆𝐹𝐶𝑀 

(𝑈 𝑡+1 ,𝑉(𝑡+1),𝐸𝑡) 

(5.14) 

By applying Lagrange multiplier method to equation (5.10), the iterative formulae for 𝑈 and 𝑉 

are obtained as follows: 

𝑢𝑖𝑗
(𝑡+1)

=    
 𝑥𝑗 − 𝑒𝑗

(𝑡)
− 𝑣𝑖

(𝑡)
  

2

2

 𝑥𝑗 − 𝑒𝑗
(𝑡)
− 𝑣𝑘

(𝑡)
  

2

2 

𝑐

𝑘=1

 

−1

  

(5.15) 
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𝑣𝑖𝑞
(𝑡+1)

=
 (𝑢𝑖𝑗

(𝑡+1)
)𝑚 𝑥𝑗𝑞 − 𝑒𝑗𝑞

𝑡  𝑛
𝑖=1

 (𝑢𝑖𝑗
(𝑡+1)

)𝑚𝑛
𝑖=1

  

(5.16) 

5.3   Adaptive Neighbor Information Constrained DSFCM 

(AN_DsFCM) 

To improve the clustering performance, adaptive neighbor information constrained DSFCM is 

proposed in this chapter. In the proposed algorithm, influence of neighbor pixels has been 

estimated in the objective function. Let us consider, 

𝑑0 =  𝑥𝑖 − 𝑣𝑗 2

2
 

𝑑𝑚 = 𝑚𝑒𝑎𝑛𝑟∈𝑁𝑖 ,𝑟≠𝑖 𝑥𝑟 − 𝑣𝑗 2

2
 

𝑑𝑡 =  𝑑𝑚 − 𝑑0 2
2 

(5.17) 

 

 

Fig. 5.1 Relationship between central pixel and its neighbor pixel 

 

Fig. 5.2 Graphical abstract of proposed AN_DsFCM 
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The aim is to segregate a subset 𝑟′(𝑟′ ∈ 𝑟) which is having larger probability to belong to 𝑗-th 

cluster. This is done by robust selection of distance measure parameters. Let us consider that 𝑑𝑟
′  

is the distance measure parameter associated with 𝑟′ . Now considering 𝑟 ∈ 𝑁𝑖  and 𝑟 ≠ 𝑖, let us 

set a relation among distance between neighboring pixel and current cluster center such that:  

𝑑𝑟
′ = { 𝑥𝑖 − 𝑣𝑗 2

2
,  𝑟′ ⊆ 𝑟  

and   [(𝑑0 + 𝑑𝑡) >  𝑥𝑖 − 𝑣𝑗 2

2
≥  (𝑑0 − 𝑑𝑡)]} 

(5.18) 

Now considering 𝑥𝑟
′  and associated error 𝑒𝑟

′ , the modified 𝑑𝑟
′  will be: 

𝑑𝑟
′ = { 𝑥𝑟

′ − 𝑒𝑟
′ − 𝑣𝑗 2

2
} 

(5.19) 

So, the first term of the objective function becomes: 

𝐽1
′ =   𝑢𝑖𝑗

𝑚 1

𝑛(𝑟′)
   𝑥𝑟

′ − 𝑒𝑟
′ − 𝑣𝑗 2

2

𝑟∈𝑁𝑗

 

𝑛

𝑖=1

𝑐

𝑗=1

  

(5.20) 

where 𝑛(𝑟 ′) is the number of elements in 𝑟 ′. Now imposing sparsity on E, the second term of 

proposed AN_DsFCM  becomes: 

𝐽2
′ =  𝜆𝑞

𝑙

𝑞=1

 
  𝑒𝑖𝑞 

𝑝𝑛
𝑖=1

1 + 𝑑𝑟 ′ 𝑖
𝑟 ′∈𝑁𝑗

  

where     𝑑𝑟 ′ 𝑖 =  𝑥𝑟 ′ − 𝑥𝑖 2
2 

(5.21) 

Now the proposed objective function is constructed as:  

𝐽′′ = 𝐽1
′ + 𝐽2

′  

(5.22) 

So, the objective function of proposed AN_DsFCM  becomes: 

 

𝐽′′ =   𝑢𝑖𝑗
𝑚 1

𝑛(𝑟′)
   𝑥𝑟

′ − 𝑒𝑟
′ − 𝑣𝑗 2

2

𝑟∈𝑁𝑗

 

𝑛

𝑖=1

𝑐

𝑗=1

+  𝜆𝑞

𝑙

𝑞=1

 
  𝑒𝑖𝑞 

𝑝𝑛
𝑖=1

1 + 𝑑𝑟 ′ 𝑖
𝑟 ′∈𝑁𝑗

  

(5.23) 

 where 𝑁𝑖  represents a 3×3 local window centered at 𝑖.  
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Now the constraint   𝑥𝑟
′ − 𝑒𝑟

′ − 𝑣𝑗 2

2
𝑟∈𝑁𝑖

 in first term of equation (5.23) computes the 

summation of spatial weighted Eucledian distances between 𝑗-th cluster center and some selected 

neighbouring pixels as determined in equation (5.20). The closeness of 𝑑𝑟  towards 𝑑0 determines 

the affinity of respective neighbour pixel to be included into same cluster that 𝑖 belongs to. The 

summation constraint is averaged out by multiplying it with 1 𝑛(𝑟′) . This attribute keeps the 

justified weight balance in proposed objective function. Since the effect of 𝑟 on 𝑟′  is not relayed 

in 𝑢𝑖𝑗
𝑚 , it is relatively free from any influence and only relies on center pixel. The theoretical 

value of selective neighbor pixel 𝑟′  is estimated by eliminating successive error coefficients 𝑒𝑟
′  

so that it becomes (𝑥𝑟
′ − 𝑒𝑟

′ ). This incorporates robustness to rician noise or outliers in 𝐽′′ . Now 

the multiplying coefficient 1 1 + 𝑑𝑟 ′ 𝑗  in the second term of (5.23) reflects the error influence of 

neighbouring pixel depending on spatial distance from central pixel. 

Now by adopting Lagrange multiplier theorem, Lagrange objective function can be constructed 

as: 

𝐿 =   𝑢𝑖𝑗
𝑚 1

𝑛 𝑟′ 
   𝑥𝑟

′ − 𝑒𝑟
′ − 𝑣𝑗 2

2

𝑟∈𝑁𝑗

 

𝑛

𝑖=1

𝑐

𝑗=1

+  𝜆𝑞

𝑙

𝑞=1

 
  𝑒𝑖𝑞 

𝑝𝑛
𝑖=1

1 + 𝑑𝑟 ′ 𝑖
𝑟 ′∈𝑁𝑗

+  𝜇𝑖   𝑢𝑖𝑗 − 1

𝑐

𝑗=1

 

𝑛

𝑖=1

          

(5.24) 

where 𝜇𝑖  represents Lagrange multiplier. Now by fixing E, derivative of L is obtained with 

respect to  𝑢𝑖𝑗 , 𝑣𝑗  and 𝜇𝑖 . By making these derivatives to zero, membership partition matrix and 

cluster center vector may be computed as shown below: 

𝑢𝑖𝑗
(𝑡+1)

=

 

 
 
  

  𝑥𝑟
′ − 𝑒𝑟

′(𝑡)
− 𝑣𝑗

(𝑡)
 

2

2

𝑟∈𝑁𝑖

  𝑥𝑟
′ − 𝑒𝑟

′(𝑡)
− 𝑣𝑘

(𝑡)
 

2

2

𝑟∈𝑁𝑖

 

1
𝑚−1

𝑐

𝑘=1

 

 
 

−1

  

(5.25) 

𝑣𝑗
(𝑡+1)

=
 (𝑢𝑖𝑗

(𝑡+1)
)𝑚  (𝑥𝑟

′ − 𝑒𝑟
′ 𝑡 )𝑟 ′∈𝑁𝑖

𝑛
𝑖=1

  (𝑢𝑖𝑗
(𝑡+1)

)𝑚𝑛
𝑖=1

𝑛
𝑟 ′ ∈𝑁𝑖

   

(5.26) 

To estimate the error 𝐸 , both the components 𝑒𝑖 =  𝑒𝑖1, 𝑒𝑖2, 𝑒𝑖3,… , 𝑒𝑖𝑞 ,… , 𝑒𝑖𝑙  and 𝑒𝑟  are not 

mutually exclusive to each other. 𝑒𝑟  cannot be considered as a constant while solving for 𝐸. Now 

being the adjacent neighbour, both 𝑖 and 𝑗 have mutual error influence on each other. So, in error 
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image space, 𝑟 ∈ 𝑁𝑖 ≅ 𝑖 ∈ 𝑁𝑝 . While calculating the error influence around 𝑖-th pixel, we can 

infer that  

 𝑢𝑖𝑗
𝑚  𝑓(𝑒𝑖) +  𝑓(𝑒𝑟)

𝑟 ′ ∈𝑁𝑖

 =   𝑢𝑖𝑟 ′
𝑚 (𝑓(𝑟′))

𝑟 ′∈𝑁𝑖

𝑛

𝑖=1

𝑛

𝑖=1

  

(5.27) 

The error function is in 𝑟 other than 𝑟′  while 𝑟′  is eliminated as it has a minimal chance to retain 

in the same cluster where the 𝑖-th pixel currently retains. f(▪) in equation (5.27) is a function 

associated with 𝑒𝑖   and 𝑒𝑟 . By using equation (5.27), we can rewrite equation (5.23) as: 

𝐽′′ =   𝑢𝑖𝑗
𝑚 1

𝑛(𝑟′)
   𝑥𝑖

′ − 𝑒𝑖
′ − 𝑣𝑗 2

2

𝑟∈𝑁𝑗

 

𝑛

𝑖=1

𝑐

𝑗=1

+  𝜆𝑞

𝑙

𝑞=1

 
  𝑒𝑖𝑞 

𝑝𝑛
𝑖=1

1 + 𝑑𝑟 ′ 𝑖
𝑟 ′ ∈𝑁𝑗

  

(5.28) 

For optimization of 𝐸, equation (5.28) can be decomposed into 𝑛 × 𝑙 sub problems as follows: 

𝑒𝑖𝑞
(𝑡+1)

= 𝑎𝑟𝑔𝑚𝑖𝑛  
 𝑢𝑖𝑟

(𝑡+1)
 
𝑚
 𝑥𝑖𝑞

′ − 𝑒𝑖𝑞
′ − 𝑣𝑗𝑞

(𝑡+1)
 

2

1 + 𝑑𝑟 ′ 𝑖
+  

𝜆𝑞 𝑒𝑖𝑞 
𝑝

1 + 𝑑𝑟 ′ 𝑖
𝑟 ′ ∈𝑁𝑖

  

𝑟 ′∈𝑁𝑖

𝑐

𝑗=1

 

(5.29) 

The error matrix 𝐸 of the AN_DsFCM can be solved by using soft thresholding as below: 

𝑒𝑖𝑞
(𝑡+1)

=

𝑠𝑜𝑓𝑡  𝐴,
𝜆𝑞 2 

 (1 + 𝑑𝑟 ′ 𝑖)𝑟 ′∈𝑁𝑖
 

  
1

1 + 𝑑𝑟 ′ 𝑖
(𝑢𝑖𝑟

(𝑡+1)
)𝑟 ′∈𝑁𝑖

𝑐
𝑗=1

  

(5.30) 

  where 𝐴 is given by:  

𝐴 =    
𝑢𝑖𝑟
 𝑡+1 𝑚 (𝑥𝑖𝑞 − 𝑣𝑗𝑞

(𝑡+1)
)

1 + 𝑑𝑟 ′ 𝑖
  

𝑟 ′∈𝑁𝑖

𝑐

𝑗=1

 

(5.31) 

In the proposed AN_DsFCM algorithm, 𝑁𝑖  has been employed as a local window. Due to the 

introduction of sparse in the proposed algorithm, it becomes more sensitive to identify noise and 

can estimate a more accurate cluster center. Proposed algorithm has been illustrated by means of 

a block diagram in Fig. 5.2. 
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_____________________________________________________________________________________ 

Algorithm 5.1: Pseudo code for Adaptive Neighbour Information constrained DsFCM 

_____________________________________________________________________________________ 

Input: Intensity dataset = (𝑥1, 𝑥2,… , 𝑥𝑚 ), parameter vector 𝜆. 

Initialize: Candidate fuzzy factor 𝑟, permitted threshold 휀, number of cluster c, window size Ni, 

Initial membership partition matrix U
0
, error matrix E=0, loop counter t=0. 

Step 1: Dimensional indices: [imax ,jmax] = dim(X) 

Step 2: for i = 2 to (imax - 1) 

           for j= 2 to (jmax-1) 

                 Update d0, dn, dm & dt using (5.17) 

                 Update 𝑟′ ∈ 𝑟 where 𝑟 ∈ 𝑁𝑖 , 𝑟 ≠ 𝑖  

                    such that (𝑑𝑚 + 𝑑𝑡) > 𝑑𝑟
′ ≥  (𝑑𝑚 − 𝑑𝑡) using (5.18)                                                                                                                                    

                 Update 𝑒𝑟
′  associated to 𝑟′  (5.19) 

                 Update 𝐽1
′  using (5.20) 

                 Update 𝑑𝑟 ′ 𝑖  using (5.22) & 𝜆𝑞  using (5.34)             

                 Update 𝐽2
′  using (5.21) 

                 Update resultant objective function 𝐽′′  using (5.23) 

                 Update 𝑈(𝑡+1) using (5.25) & 𝑉(𝑡+1) using (5.26) 

                 Update deviation matrix 𝑒(𝑡+1) using (5.30) 

                 Update loop counter 𝑡 

                    If 𝑎𝑏𝑠[𝑈𝑡 − 𝑈𝑡+1] < 휀 then terminate, otherwise rewind to Step 2 

            end for 

               end for 

Output: Terminal partition matrix U, closing cluster center V and estimated deviation matrix E.   

_____________________________________________________________________________________    

 

 

It can be seen from equation (5.30) that 𝜆𝑞  is an important parameter in the proposed algorithm. 

As a matter of fact, appropriate selection of 𝜆𝑞  is required for better clustering performance. The 

soft thresholding operator has the following property      

𝑠𝑜𝑓𝑡  𝑎,
𝜆𝑞
2
 =

𝑠𝑜𝑓𝑡  𝑘𝑎,
𝑘𝜆𝑞

2  

𝑘
 ,      𝑘 > 0   

(5.32) 

Using this property, it can be found that  



 

 

87 

 

𝑒𝑗𝑞
(𝑡+1)

=

𝑠𝑜𝑓𝑡  
  

1
1 + 𝑑𝑟 ′ 𝑖

 𝑢𝑖𝑟
(𝑡+1)

 
𝑚
 𝑥𝑖𝑞 − 𝑣𝑖𝑞

(𝑡+1)
 ,
𝜆𝑞
2𝑟 ′∈𝑁𝑖

𝑐
𝑗=1

 (1 + 𝑑𝑟 ′ 𝑖)𝑟 ′∈𝑁𝑖
 

   
1

1 + 𝑑𝑟 ′ 𝑖
 𝑢𝑖𝑟

(𝑡+1)
  / 

1
1 + 𝑑𝑟 ′ 𝑖

𝑟 ′∈𝑁𝑖   𝑟 ′ ∈𝑁𝑖
𝑐
𝑗=1

  

(5.33) 

  where 𝜆𝑞 = [𝜆𝑞1,𝜆𝑞2, 𝜆𝑞3,… , 𝜆𝑞𝑙 ] is used as deviation tolerance distance vector. 

 

 

Let us assume that the measured data is close to center 𝑣𝑖  and if the weighted distance between 

𝑥𝑖  and 𝑣𝑖  becomes ∆𝜆𝑞  then the other extra part will be considered as an error. When the 

weighted distance between a point to its cluster center crosses ∆𝜆𝑞  (where ∆𝜆𝑞  is different for 

different point corresponding to center), the rest fragment is considered as noise or outlier.  

 In this experiment, 𝜆𝑞  has been chosen as follows: 

∆𝜆𝑞 = 0.8 𝜎𝑞 ,     𝑞 = 1,…  , 𝑙  

(5.34) 

  where 𝑙 is the dimension of observed data and 𝜎𝑞   is the standard deviation in 𝑞-th channel. In 

view of conserving majority of data population in dispersion of 𝜎𝑞 , a multiplying factor of 80% 

is justified for brain MR scans. Proposed algorithm has been tested in different MRI and fMRI 

scans and it is found that ∆𝜆𝑞  achieves good performance.  

5.4  Simulation Results 

Performance of the proposed algorithm is analyzed through qualitative discussion and visual 

impression. Behavior of AN_DsFCM has also been evaluated in terms of quantitative metrics 

such as structural similarity index measure (SSIM), dice coefficient (DC), segmentation accuracy 

(SA), sensitivity and jaccard index (JI) to assess the clustering efficiency [5]. The proposed 

clustering method is adopted to cross-analyze in terms of figure of merit (FOM) and Shanon's 

entropy response [6, 7]. In addition to this, the performance of proposed algorithm is evaluated 

with several other well established fuzzy clustering methods including FCM_S1 [8], FCM_S2 

[8], FCMLSM [9], FGFCM_S1 [8], FGFCM_S2 [8], FRFCM [10], ARKFCM [11], EnFCM 

[12] and DSFCM_N [4].  
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There are a few advanced methods reported for classification of Alzheimer‟s disease in recent 

years [13 - 15]. Proposed algorithm is tested on a large dataset of brain MRI scans focused on 

AD and MCI subjects. To demonstrate the performance of proposed algorithm, twelve such MRI 

test images from ADNI database and eight more real time images are taken into consideration for 

the purpose of illustration. All the images are deliberately chosen with different subject, series, 

patient age, slice and acquisition plane which are abbreviated in Table 5.1 and 5.2. MATLAB 

R2019a platform with core i5 processor @3.6 GHz, 8GB RAM and Windows 10 Professional 64 

bit operating system has been successfully used for analyzing the images by means of proposed 

algorithm.  

 

Table 5.1 Imaging parameters for Test images 1-6 

 TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 

ADNI image ID 569634 569634 116582 116582 116582 13722 

Type details T2 FLAIR PD/T2 FSE MP-RAGE MP-RAGE MP-RAGE MP-RAGE 

Acquisition plane Axial Axial Sagittal Coronal Axial Axial 

Slice 18 of 35 17 of 35 85 of 170 128 of 256 128 of 256 156 of 256 

Table 5.2 Imaging parameters for Test images 7-12 

 TI 7 TI 8 TI 9 TI 10 TI 11 TI 12 

ADNI image ID 13722 13721 13721 13721 13721 863060 

Type details MP-RAGE MP-R R MP-R R MP-R R MP-R R MP-R R 

Acquisition plane Axial Sagittal Sagittal Coronal Coronal Coronal 

Slice 164 of 256 70 of 166 102 of 166 100 of 256 90 of 256 122 of 256 

 

  

The base pixel neighbor information constraint is ignored for all nine clustering techniques 

except DSFCM_N. The fuzzy clustering window is fixed at 3×3 with a common constant fuzzy 

factor for all eight methods. All the test images in DSFCM_N are examined by exposing them to 
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Gaussian noise, salt & pepper noise, uniform noise and mixed noise. The proposed AN_DsFCM 

is designed to mitigate the accuracy requirement for MR images. Thus, in proposed 

demonstration, a very low intensity rician noise is imposed on all the AD test MRI images and 

tested further.  

Comparative analysis among different clustering methods has been presented qualitatively in 

Fig. 5.3 to 5.14 and quantitatively in Table 5.3 to 5.24 respectively. In order to analyze the 

computational complexity of different techniques, time complexity has been depicted in Table 

5.25. Looking at those images, it can be identified that the GM and WM boundaries are bold and 

contrast is significantly enhanced for AN_DsFCM compared to other clustering methods. The 

LV region is clear and prominent with the aid of proposed algorithm. It can be inferred that the 

proposed algorithm, besides improving the clustering accuracy, is also capable of identifying 

explicit object boundary for brain MRI scans. 

 

 

Fig. 5.3 Qualitative analysis among different algorithms on Test image 1 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.4 Qualitative analysis among different algorithms for Test image 2 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.5 Qualitative analysis among different algorithms for Test image 3 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.6 Qualitative analysis among different algorithms for Test image 4 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.7 Qualitative analysis among different algorithms for Test image 5 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.8 Qualitative analysis among different algorithms for Test image 6 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 



 

 

95 

 

 

Fig. 5.9 Qualitative analysis among different algorithms for Test image 7 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.10 Qualitative analysis among different algorithms for Test image 8 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.11 Qualitative analysis among different algorithms for Test image 9 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.12 Qualitative analysis among different algorithms for Test image 10 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.13 Qualitative analysis among different algorithms for Test image 11 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 
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Fig. 5.14 Qualitative analysis among different algorithms for Test image 12 (a) original image, (b) ground 

truth, (c) FCM_S1, (d) FCM_S2, (e) ARKFCM, (f) EnFCM, (g) FCMLSM, (h) FGFCM_S1 , (i) 

FGFCM_S2, (j) FRFCM, (k) DSFCM_N, (l) AN_DsFCM (Proposed) 

 
 

 

 

 

 

Table 5.3 Quantitative analysis among different clustering algorithms on Test image 1  

Test image 1 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6154  0.8422  0.8167  0.7274 0.7234 

FCM_S2 0.6165  0.8431  0.8177  0.7288   0.7233 

ARKFCM 0.6539  0.9210  0.9440  0.9748  0.7259 

EnFCM 0.5807  0.8321  0.8067 0.7125   0.7213 

FCMLSM 0.6338  0.8925  0.8669  0.8896   0.7286 

FGFCM_S1 0.6152  0.8422  0.8167  0.7274    0.7232 

FGFCM_S2 0.6167  0.8431  0.8176  0.7287   0.7234 

FRFCM 0.5757   0.8321  0.8067  0.7125   0.7232 

DSFCM_N 0.6671  0.9590   0.9570   0.9776   0.7340 

AN_DsFCM 0.6845  0.9682  0.9559  0.9893   0.7331 
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Table 5.4 Quantitative analysis among different clustering algorithms on Test image 2 

Test image 2 SSIM DICE SA Sensitivity JI 

FCM_S1 0.5972  0.8565  0.8350  0.7490   0.7119 

FCM_S2 0.6083  0.8574  0.8359  0.7504   0.7130 

ARKFCM 0.7724   0.9327   0.9168   0.9996    0.7190 

EnFCM 0.5748   0.8451  0.8237  0.7318   0.7103 

FCMLSM 0.6274  0.9386  0.9182  0.9184  0.9141 

FGFCM_S1 0.5973  0.8565  0.8350  0.7491  0.7117 

FGFCM_S2 0.6079  0.8573  0.8358  0.7503  0.7130 

FRFCM 0.5722  0.8451  0.8237  0.7318  0.7126 

DSFCM_N 0.6307  0.9436  0.9260  0.9193  0.7178 

AN_DsFCM 0.6531  0.9534  0.9357  0.9294  0.7216 

 

Table 5.5 Quantitative analysis among different clustering algorithms on Test image 3 

Test image 3 SSIM DICE SA Sensitivity JI 

FCM_S1 0.5491 0.8879 0.8839 0.7984 0.6561 
FCM_S2 0.5504 0.8893 0.8867 0.7983 0.6562 

ARKFCM 0.5699 0.9294 0.9126 0.9583 0.6672 
EnFCM 0.5319 0.8878 0.8839 0.7983 0.6557 

FCMLSM 0.5764 0.9254 0.9141 0.9246 0.6678 
FGFCM_S1 0.5499 0.8879 0.8839 0.7983 0.6561 
FGFCM_S2 0.5521 0.8879 0.8839 0.7984 0.6561 

FRFCM 0.5327 0.8878 0.8839 0.7983 0.6557 
DSFCM_N 0.5662 0.9361 0.9144 0.9675 0.6698 

AN_DsFCM 0.5781 0.9424 0.9298 0.9874 0.6702 
 

Table 5.6 Quantitative analysis among different clustering algorithms on Test image 4  

Test image 4 SSIM DICE SA Sensitivity JI 

FCM_S1 0.5760 0.8675 0.8522 0.7661 0.6980 

FCM_S2 0.5769 0.8675 0.8522 0.7661 0.6981 

ARKFCM 0.5832 0.8964 0.9124 0.9689 0.7021 

EnFCM 0.5573 0.8675 0.8522 0.7661 0.6765 

FCMLSM 0.5863 0.9168 0.9115 0.9209 0.6983 

FGFCM_S1 0.5764 0.8675 0.8522 0.7661 0.6982 

FGFCM_S2 0.5767 0.8675 0.8522 0.7661 0.6981 

FRFCM 0.5656 0.8675 0.8522 0.7661 0.6980 

DSFCM_N 0.5979 0.9211 0.9251 0.9725 0.7076 

AN_DsFCM 0.6112 0.9494 0.9327 0.9885 0.7096 

 

Table 5.7 Quantitative analysis among different clustering algorithms on Test image 5 

Test image 5 SSIM DICE SA Sensitivity JI 

FCM_S1 0.5797 0.8727 0.8629 0.7742 0.6779 

FCM_S2 0.5803 0.8729 0.8631 0.7745 0.6681 

ARKFCM 0.6192 0.9231 0.9341 0.9389 0.6747 
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EnFCM 0.6135 0.8721 0.8623 0.7731 0.6654 

FCMLSM 0.8672 0.9250 0.9372 0.9225 0.6716 

FGFCM_S1 0.5792 0.8726 0.8628 0.7740 0.6679 

FGFCM_S2 0.5804 0.8729 0.8631 0.7745 0.6683 

FRFCM 0.5565 0.8721 0.8623 0.7732 0.6676 

DSFCM_N 0.6289 0.9446 0.9454 0.9586 0.6781 

AN_DsFCM 0.6330 0.9624 0.9527 0.9884 0.6804 

 

Table 5.8 Quantitative analysis among different clustering algorithms on Test image 6 

Test image 6 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6637 0.8924 0.8599 0.8057 0.7722 

FCM_S2 0.6646 0.8982 0.8668 0.8153 0.7722 

ARKFCM 0.7490 0.9471 0.9162 0.9433 0.7812 

EnFCM 0.6437 0.8870 0.8536 0.7970 0.7720 

FCMLSM 0.8886 0.9791 0.9412 0.9546 0.7789 

FGFCM_S1 0.6626 0.8916 0.8589 0.8043 0.7721 

FGFCM_S2 0.6639 0.8989 0.8676 0.8164 0.7722 

FRFCM 0.6430 0.8870 0.8536 0.7970 0.7723 

DSFCM_N 0.7666 0.9530 0.9419 0.9698 0.7810 

AN_DsFCM 0.7746 0.9722 0.9589 0.9890 0.7826 

 

Table 5.9 Quantitative analysis among different clustering algorithms on Test image 7  

Test image 7 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6822 0.8810 0.8414 0.7872 0.7976 

FCM_S2 0.6828 0.8810 0.8414 0.7872 0.7976 

ARKFCM 0.7759 0.9857 0.9384 0.8929 0.8009 

EnFCM 0.6649 0.8810 0.8414 0.7872 0.7975 

FCMLSM 0.7613 0.9430 0.9750 0.9488 0.7930 

FGFCM_S1 0.6819 0.8810 0.8414 0.7872 0.7977 

FGFCM_S2 0.6834 0.8810 0.8414 0.7872 0.7977 

FRFCM 0.6652 0.8810 0.8414 0.7872 0.7976 

DSFCM_N 0.7963 0.9682 0.9567 0.9385 0.8034 

AN_DsFCM 0.8014 0.9770 0.9650 0.9889 0.8112 

 

Table 5.10 Quantitative analysis among different clustering algorithms on Test image 8  

Test image 8 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6145 0.9152 0.8993 0.8371 0.6971 

FCM_S2 0.6169 0.9146 0.8987 0.8427 0.6971 

ARKFCM 0.6597 0.9577 0.9230 0.9699 0.7072 

EnFCM 0.5972 0.9009 0.8838 0.8197 0.6970 

FCMLSM 0.9084 0.9819 0.9769 0.9755 0.9351 

FGFCM_S1 0.6144 0.9152 0.8993 0.8437 0.6971 

FGFCM_S2 0.6171 0.9146 0.8987 0.8427 0.6971 

FRFCM 0.6063 0.9009 0.8838 0.8197 0.6974 

DSFCM_N 0.6670 0.9616 0.9313 0.9793 0.7154 

AN_DsFCM 0.6890 0.9618 0.9489 0.9883 0.7200 
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Table 5.11 Quantitative analysis among different clustering algorithms on Test image 9  

Test image 9 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6264 0.9131 0.8944 0.8400 0.7117 

FCM_S2 0.6274 0.9128 0.8942 0.8396 0.7118 

ARKFCM 0.6428 0.9498 0.9302 0.9699 0.7190 

EnFCM 0.6041 0.8976 0.8774 0.8142 0.7117 

FCMLSM 0.6499 0.9597 0.9234 0.9753 0.7211 

FGFCM_S1 0.6255 0.9131 0.8945 0.8401 0.7117 

FGFCM_S2 0.6276 0.9128 0.8941 0.8395 0.7118 

FRFCM 0.6198 0.8976 0.8774 0.8142 0.7120 

DSFCM_N 0.6598 0.9536 0.9391 0.9728 0.7228 

AN_DsFCM 0.6839 0.9618 0.9476 0.9885 0.7271 

 

Table 5.12 Quantitative analysis among different clustering algorithms on Test image 10 

Test image 10 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6459 0.8868 0.8581 0.7966 0.7440 

FCM_S2 0.6464 0.8868 0.8581 0.7966 0.7439 

ARKFCM 0.7390 0.9677 0.9526 0.9499 0.7516 

EnFCM 0.6302 0.8868 0.8581 0.7966 0.7439 

FCMLSM 0.7254 0.8696 0.8893 0.9143 0.7405 

FGFCM_S1 0.6452 0.8868 0.8581 0.7966 0.7440 

FGFCM_S2 0.6468 0.8868 0.8581 0.7966 0.7440 

FRFCM 0.6315 0.8868 0.8581 0.7966 0.7444 

DSFCM_N 0.7392 0.9696 0.9653 0.9598 0.7570 

AN_DsFCM 0.7506 0.9793 0.9706 0.9872 0.7566 

 

Table 5.13 Quantitative analysis among different clustering algorithms on Test image 11  

Test image 11 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6447 0.8896 0.8614 0.8012 0.7534 

FCM_S2 0.6459 0.8896 0.8614 0.8012 0.7535 

ARKFCM 0.6930 0.9471 0.9373 0.9299 0.7599 

EnFCM 0.6310 0.8896 0.8614 0.8012 0.7533 

FCMLSM 0.6989 0.9500 0.9336 0.9048 0.9196 

FGFCM_S1 0.6449 0.8896 0.8614 0.8012 0.7533 

FGFCM_S2 0.6456 0.8896 0.8614 0.8012 0.7535 

FRFCM 0.6326 0.8896 0.8614 0.8012 0.7539 

DSFCM_N 0.7144 0.9756 0.9651 0.9486 0.7616 

AN_DsFCM 0.7367 0.9728 0.9611 0.9872 0.7646 
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Table 5.14 Quantitative analysis among different clustering algorithms on Test image 12  

Test image 12 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6801 0.9177 0.8948 0.8480 0.7549 

FCM_S2 0.6823 0.9177 0.8948 0.8480 0.7547 

ARKFCM 0.6948 0.9425 0.9396 0.9282 0.7596 

EnFCM 0.6602 0.9177 0.8948 0.8480 0.7537 

FCMLSM 0.7953 0.9489 0.9327 0.9027 0.7465 

FGFCM_S1 0.6796 0.9177 0.8948 0.8480 0.7547 

FGFCM_S2 0.6823 0.9177 0.8948 0.8480 0.7547 

FRFCM 0.6631 0.9177 0.8948 0.8480 0.7543 

DSFCM_N 0.7011 0.9522 0.9448 0.9596 0.7458 

AN_DsFCM 0.7120 0.9766 0.9670 0.9851 0.7651 

 

Table 5.15 Quantitative analysis among different clustering algorithms on Real image 1 

Real image 1 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6689 0.8578 0.8145 0.7510 0.7852 

FCM_S2 0.6692 0.8578 0.8145 0.7510 0.7852 

ARKFCM 0.8184 0.8939 0.9309 0.9590 0.7787 

EnFCM 0.6543 0.8578 0.8145 0.7510 0.7852 

FCMLSM 0.7995 0.9374 0.9122 0.8821 0.7806 

FGFCM_S1 0.6691 0.8578 0.8145 0.7510 0.7852 

FGFCM_S2 0.6692 0.8578 0.8145 0.7510 0.7852 

FRFCM 0.6518 0.8578 0.8145 0.7510 0.7852 

DSFCM_N 0.8345 0.9634 0.9649 0.9789 0.7869 

AN_DsFCM 0.8580 0.9825 0.9734 0.9890 0.8013 

 

Table 5.16 Quantitative analysis among different clustering algorithms on Real image 2  

Real image 2 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6445 0.8483 0.8055 0.7365 0.7794 

FCM_S2 0.6447 0.8483 0.8055 0.7365 0.7794 

ARKFCM 0.8146 0.9482 0.9224 0.9579 0.7758 

EnFCM 0.6326 0.8483 0.8055 0.7365 0.7794 

FCMLSM 0.7714 0.9207 0.8916 0.8531 0.7641 

FGFCM_S1 0.6444 0.8483 0.8055 0.7365 0.7794 

FGFCM_S2 0.6456 0.8483 0.8055 0.7365 0.7794 

FRFCM 0.6242 0.8483 0.8055 0.7365 0.7795 

DSFCM_N 0.8250 0.9689 0.9481 0.9742 0.7841 

AN_DsFCM 0.8318 0.9783 0.9672 0.9832 0.7942 

 

Table 5.17 Quantitative analysis among different clustering algorithms on Real image 3  

Real image 3 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6519 0.8380 0.7926 0.7212 0.7830 

FCM_S2 0.6522 0.8380 0.7926 0.7212 0.7831 

ARKFCM 0.8122 0.9349 0.9123 0.9464 0.7849 
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EnFCM 0.6355 0.8380 0.7926 0.7212 0.7831 

FCMLSM 0.7680 0.9101 0.8773 0.8350 0.7882 

FGFCM_S1 0.7516 0.8330 0.7926 0.7212 0.7830 

FGFCM_S2 0.6522 0.8380 0.7926 0.7212 0.7830 

FRFCM 0.6258 0.8380 0.7926 0.7212 0.7831 

DSFCM_N 0.8285 0.9732 0.9546 0.9887 0.7815 

AN_DsFCM 0.8531 0.9824 0.9735 0.9974 0.7962 

 

Table 5.18 Quantitative analysis among different clustering algorithms on Real image 4 

Real image 4 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6543 0.8361 0.7901 0.7184 0.7815 

FCM_S2 0.6545 0.8361 0.7901 0.7184 0.7815 

ARKFCM 0.8225 0.9561 0.9342 0.9484 0.7968 

EnFCM 0.6382 0.8361 0.7901 0.7184 0.7814 

FCMLSM 0.7419 0.8685 0.8268 0.7676 0.7989 

FGFCM_S1 0.6541 0.8361 0.7901 0.7184 0.7815 

FGFCM_S2 0.6547 0.8361 0.7901 0.7184 0.7814 

FRFCM 0.6270 0.8361 0.7901 0.7184 0.7815 

DSFCM_N 0.8549 0.9666 0.9698 0.9712 0.7938 

AN_DsFCM 0.8641 0.9855 0.9781 0.9887 0.8012 

 

Table 5.19 Quantitative analysis among different clustering algorithms on Real image 5 

Real image 5 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6471 0.8481 0.8072 0.7362 0.7747 

FCM_S2 0.6495 0.8483 0.8072 0.7362 0.7748 

ARKFCM 0.8175 0.9345 0.9320 0.9676 0.7818 

EnFCM 0.6302 0.8481 0.8072 0.7362 0.7747 

FCMLSM 0.7546 0.8723 0.8514 0.8846 0.7749 

FGFCM_S1 0.6472 0.8481 0.8072 0.7362 0.7747 

FGFCM_S2 0.6491 0.8481 0.8072 0.7362 0.7747 

FRFCM 0.6273 0.8481 0.8072 0.7362 0.7748 

DSFCM_N 0.8392 0.9733 0.9586 0.9864 0.7838 

AN_DsFCM 0.8441 0.9811 0.9719 0.9987 0.7889 

 

Table 5.20 Quantitative analysis among different clustering algorithms on Real image 6 

Real image 6 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6338 0.8458 0.8061 0.7328 0.7685 

FCM_S2 0.6338 0.8458 0.8061 0.7328 0.7685 

ARKFCM 0.7533 0.9325 0.9191 0.9683 0.7716 

EnFCM 0.6186 0.8458 0.8061 0.7328 0.7685 

FCMLSM 0.6384 0.8626 0.8314 0.7849 0.7652 

FGFCM_S1 0.6338 0.8458 0.8061 0.7328 0.7686 

FGFCM_S2 0.6339 0.8458 0.8061 0.7328 0.7686 

FRFCM 0.6139 0.8458 0.8061 0.7328 0.7686 

DSFCM_N 0.7785 0.9560 0.9381 0.9879 0.7741 

AN_DsFCM 0.7825 0.9680 0.9521 0.9998 0.7813 
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Table 5.21 Quantitative analysis among different clustering algorithms on Real image 7 

Real image 7 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6715 0.8624 0.8200 0.7581 0.7878 

FCM_S2 0.6720 0.8624 0.8200 0.7581 0.7877 

ARKFCM 0.8316 0.9646 0.9320 0.9289 0.7893 

EnFCM 0.6566 0.8624 0.8200 0.7581 0.7877 

FCMLSM 0.7929 0.9383 0.9135 0.8838 0.7914 

FGFCM_S1 0.6713 0.8624 0.8200 0.7581 0.7877 

FGFCM_S2 0.6720 0.8624 0.8200 0.7581 0.7878 

FRFCM 0.6548 0.8624 0.8200 0.7581 0.7878 

DSFCM_N 0.8522 0.9737 0.9593 0.9812 0.7930 

AN_DsFCM 0.8537 0.9828 0.9740 0.9870 0.7976 

 

Table 5.22 Quantitative analysis among different clustering algorithms on Real image 8  

Real image 8 SSIM DICE SA Sensitivity JI 

FCM_S1 0.6936 0.8727 0.8298 0.7741 0.7850 

FCM_S2 0.6938 0.8727 0.8298 0.7741 0.7850 

ARKFCM 0.8225 0.9447 0.9328 0.9507 0.7958 

EnFCM 0.6713 0.8727 0.8298 0.7741 0.7849 

FCMLSM 0.8038 0.9394 0.9140 0.8858 0.7825 

FGFCM_S1 0.6939 0.8727 0.8298 0.7741 0.7850 

FGFCM_S2 0.6929 0.8727 0.8298 0.7741 0.7850 

FRFCM 0.6746 0.8727 0.8298 0.7741 0.7850 

DSFCM_N 0.8714 0.9753 0.9655 0.9816 0.8265 

AN_DsFCM 0.8772 0.9847 0.9766 0.9872 0.8323 

 

Table 5.23 Comparative analysis on ADNI Test images in terms of FOM 

 

 TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 TI 11 TI 12 

FCM_S1 0.7492 0.7700 0.9237 0.8995 0.9032 0.8648 0.8926 0.8701 0.8677 0.7971 0.8016 0.9175 

FCM_S2 0.7488 0.7696 0.9245 0.8987 0.9040 0.8603 0.8911 0.8678 0.8618 0.7959 0.8006 0.9185 

ARKFCM 0.8928 0.8666 0.9037 0.9065 0.9191 0.9152 0.9119 0.9038 0.9043 0.9258 0.9251 0.9380 

EnFCM 0.7491 0.7751 0.8429 0.7926 0.8837 0.8816 0.7972 0.8202 0.8320 0.7953 0.8016 0.8523 

FCMLSM 0.9163 0.8741 0.9181 0.9101 0.9348 0.9305 0.9338 0.8928 0.8925 0.8376 0.9177 0.9262 

FGFCM_S1 0.7489 0.7700 0.9215 0.9000 0.9020 0.8659 0.8926 0.8697 0.8677 0.7871 0.8016 0.9189 

FGFCM_S2 0.7488 0.7695 0.9259 0.9029 0.9050 0.8592 0.8900 0.8675 0.8767 0.7961 0.8016 0.9189 

FRFCM 0.7846 0.7539 0.8542 0.8290 0.9263 0.8980 0.8688 0.8930 0.8760 0.7982 0.8123 0.8912 

DSFCM_N 0.9187 0.8801 0.9318 0.9086 0.9265 0.9263 0.9258 0.9167 0.9147 0.9331 0.9393 0.9499 

AN_DsFCM 0.9384 0.9106 0.9535 0.9304 0.9554 0.9465 0.9556 0.9261 0.9253 0.9621 0.9490 0.9581 
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Table 5.24 Comparative analysis on Real images in terms of FOM 

 RI 1 RI 2 RI 3 RI 4 RI 5 RI 6 RI 7 RI 8 
FCM_S1 0.7515 0.7373 0.7234 0.7457 0.7563 0.8225 0.7634 0.9476 

FCM_S2 0.7515 0.7370 0.7234 0.7461 0.7593 0.8298 0.7626 0.9477 

ARKFCM 0.9398 0.9168 0.8950 0.9154 0.8819 0.8682 0.9117 0.9288 

EnFCM 0.7515 0.7370 0.7234 0.7185 0.7363 0.7578 0.7583 0.9176 

FCMLSM 0.9146 0.9099 0.8925 0.8094 0.8327 0.8861 0.9206 0.9498 

FGFCM_S1 0.7515 0.7370 0.7238 0.7354 0.7565 0.8247 0.7608 0.9487 

FGFCM_S2 0.7515 0.7370 0.7234 0.7413 0.7725 0.8307 0.7633 0.9476 

FRFCM 0.7543 0.7453 0.7253 0.7315 0.7394 0.7681 0.7782 0.9446 

DSFCM_N 0.9520 0.9387 0.9384 0.9523 0.9495 0.9137 0.9587 0.9578 

AN_DsFCM 0.9660 0.9580 0.9676 0.9721 0.9632 0.9361 0.9663 0.9721 

 

Table 5.25 Time complexity (sec) of different clustering algorithms 

 

 TI 1 TI 2 TI 3 TI 4 TI 5 TI 6 TI 7 TI 8 TI 9 TI 10 TI 11 TI 12 

FCM_S1 2.68 3.32 3.29 3.81 4.12 2.01 1.83 2.64 2.15 1.45 1.90  1.57 

FCM_S2 3.04 3.26 3.26 4.00 4.02 2.05 1.90 2.69 2.11 1.35 1.77  1.56 

ARKFCM 14.24 13.62 15.23 13.79 13.81 12.42 7.342 10.62 9.10 7.288 7.35  6.18 

EnFCM 2.410 2.255 1.380 1.14 2.267 1.969 1.418 2.711 1.416 2.555 1.47  2.47 

FCMLSM 7.601 8.829 10.54 12.18 10.32 8.841 8.640 10.257 6.718 4.650 6.23  7.17 

FGFCM_S1 2.686 2.638 2.635 1.82 2.751 5.915 1.695 3.463 1.881 1.806 1.77  1.75 

FGFCM_S2 1.392 3.228 1.434 1.612 1.521 1.205 1.159 1.972 1.303 1.358 0.97  0.83 

FRFCM 2.926 2.473 2.510 2.52 2.413 1.486 1.542 1.575 1.576 3.314 1.48  1.50 

DSFCM_N 3.747 3.686 4.323 4.12 4.241 1.533 1.541 1.846 1.873 1.744 1.59  2.92 

AN_DsFCM 2.580 3.070 3.562 3.45 3.312 1.574 1.492 1.833 1.741 1.650 1.72  1.74 

 

 

Qualitative and quantitative analysis among different state-of-the-art clustering techniques have 

been presented in this section. Looking at the entries of these tables, it can be inferred that the 

SSIM score is maximum for AN_DsFCM as compared to other methods. A dynamic content of 

spatial information makes the AN_DsFCM more effective to obtain promising score in terms of 

SSIM. The DICE coefficient value is obtained between 0.94 and 0.97 for AN_DsFCM which is 

the best among all other clustering methods. The higher value of DICE coefficient indicates that 
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proposed model performs better to segregate white matter regional information which is 

disturbed by intensity in homogeneity. 

 It is also seen that proposed AN_DsFCM attains higher value of segmentation accuracy as 

compared to other existing clustering methods. The accuracy value is within 0.92 and 0.96 for all 

the test images under consideration. Higher value of SA indicates that AN_DsFCM is capable to 

provide improved clustering accuracy by suppressing rician noise interventions. While 

considering the improved values of sensitivity and JI, it has been observed that proposed 

algorithm is capable to minimize the possibility of missed detection (false negative) and provides 

regional segmentation accuracy to a significant extent. An impressive response has also been 

found in terms of FOM which varies from 0.91 to 0.96. Enhanced FOM score indicates that edge 

detection efficiency is uplifted for AN_DsFCM. A similar improved simulated quantitative 

response is also found for patient MRI practical data which proves the robustness of the 

proposed clustering algorithm.   

Entropy plots for all the twelve test images are shown in Fig. 5.15 to 5.26. From these plots, it 

can be clearly inferred that the gross entropy response of AN_DsFCM is greater than all other 

ten FCM based clustering methods. It indicates more information content about weak regional 

object boundary constraints at proposed clustering output. The dynamic neighbor information 

constraint module has provided the potential to classify selective object boundary pixels. The 

entropy plot dedicatedly emphasizes only on the information content of projected response while 

other quantitative parameters run through a comparison process with ground truth by different 

means. It has also been pointed out that entropy plot response of practical patient MRI data is 

quite similar to ADNI test MRI entropy response. Overall entropy response of the proposed 

algorithm expresses a justified clustering output which indicates to contain improved clustering 

boundary constraints based on dynamic neighbor information. 
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Fig. 5.15 Entropy plot for Test image 1  

 

Fig. 5.16 Entropy plot for Test image 2 
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Fig. 5.17 Entropy plot for Test image 3 

  

Fig. 5.18 Entropy plot for Test image 4 
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Fig. 5.19 Entropy plot for Test image 5. 

 

Fig. 5.20 Entropy plot for Test image 6. 
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Fig. 5.21 Entropy plot for Test image 7 

 

Fig. 5.22 Entropy plot for Test image 8 
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Fig. 5.23 Entropy plot for Test image 9 

 

Fig. 5.24 Entropy plot for Test image 10 



 

 

114 

 

 

Fig. 5.25 Entropy plot for Test image 11 

 

Fig. 5.26 Entropy plot for Test image 12 
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5.5 Discussion 

In this chapter, an algorithm called Adaptive Neighbor Constrained Deviation Sparse Variant 

Fuzzy C-Means Clustering (AN_DsFCM) is proposed which can efficiently process the low 

contrast brain MRI scans. The presented algorithm meets the clustering accuracy required to 

figure out MCI. By incorporating the Rician noise to MR images, the problem domain becomes 

challenging as similar to practical standards. The intervention of sparse deviations reinforces 

AN_DsFCM to estimate theoretical artifacts and suppress noise. The novel strategy of neighbor 

information constraints strengthens AN_DsFCM to produce appropriate clustering parameters. 

Simulation results of proposed method demonstrate significant improvement in clustering 

accuracy both quantitatively and visually for ADNI and practical patient MRI data set. 

AN_DsFCM seems to be a viable tool to provide high-order clustering precision in MR images 

to predict MCI. 
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Chapter 6 

Hippocampus Associated Functional 3D 

Connectivity Modeling  

6.1   Introduction 

 

Dementia due to early interventions of MCI should be essentially identified for taking 

precautionary measures. The disease can be traced with tissue loss in hippocampus and MTL and 

plays major role in cognitive and emotional ecstasy of long term memories [1-4]. Automated 

diagnosis of resting-state functional magnetic resonance imaging (Rf-MRI) leads to early 

identification of MCI limited spatial-temporal dependent dementia [5, 6]. The neuronal health 

and progression of AD can be estimated by retrieval and modeling of functional connectivity 

(FC) between major hubs of human brain [7 - 9]. Due to motion related artifacts at acquisition 

time, noise intervention and several other interventions; the sparse constraint becomes 

predominant in Rf-MRI. In the first phase of this chapter, a unique Kullback-Leibler (K-L) 

divergence based sparse constrained regression model is presented. The model creates a 

framework which identifies and analyzes FC between hippocampus and other significant region 

of interests (ROI) of brain. In the second phase of this chapter, a three dimensional 

hippocampus-parahippocampus FC analysis algorithm is presented to find out the early 

interventions of MCI. The semantic and episodic memory is formulated in MTL with 

hippocampus and associated parahippocampus, perirhinal and entorhinal neocortical subfields 

[10]. Hippocampus mostly controls the memory formation while neighboring cortices are 

responsible for memory storage. Due to interventions of MCI, tissue loss is observed in MTL 

and consequent FC degradation occurs in resting state f-MRI analysis. A robust quadratic 

detrending process is implemented to model both longer scan sessions and complex scanner drift 

constraints. The presented method examines the FC between each hippocampal subfields and 

parahippocampal subfields in its entirety. The outcome of simulated results in form of correlation 
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matrix exhibits promising efficiency of dealing functional connectivity constraints. The entire 

process leads to trace MCI related FC malfunctions more precisely.      

6.2 Hippocampus Associative K-L Sparsity Constraint Model 

6.2.1   Methodology 

Input Rf-MRI test images are arranged in parallel for different subjects both in structural and 

functional formats. The hippocampus based neuronal activity modeling with whole brain is 

studied here. The proposed architecture is depicted in Fig. 6.1 which illustrates the Rf-MRI 

feature extraction and connectivity modeling. All the working steps can be mainly divided into 

four parts viz. preprocessing, denoising, connectivity mapping and result analysis.    

 

Fig. 6.1 Complete architecture of proposed framework expanding K-L sparse constrained regression 

modeling 

Let us assume that for a particular subject, the resting state f-MRI time series data is 

identified by 𝑋 =  𝑥1, 𝑥2 ,… , 𝑥𝑁 
𝑇 ∈ ℝ𝑗×𝑖 , where each vector 𝑥𝑗 ∈ ℝ𝑀  where  𝑗 = 1,… ,𝑁  is 

associated with blood oxygen level dependent (BOLD) estimation for the 𝑗𝑡  ROI at M 

consecutive time points. Total number of ROI is selected to be N=136. Based on BOLD time 

series data, a hippocampus to whole brain sparse connectivity learning model is constructed 

which can further be employed to figure out disease progression.           

Normalization of BOLD time series is carried out for each ROI by  Xj = (Xj − μj)/σj , 

where μj and σj respectively denotes mean and standard deviation of BOLD time series signal 

for 𝑗𝑡  ROI. 

The average activated value of the 𝑛𝑡  hidden unit to all 𝑖 training samples will be  
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𝜉 𝑛 =
1

𝑖
 𝑔𝑖

2 𝑥𝑚  

𝑖

𝑚=1

  

(6.1) 

where 𝑔𝑖
2 𝑥𝑚   represents the 𝑛𝑡  first autoencoder hidden unit output for the 𝑚𝑡  input.  

A network sparse parameter is estimated and initiated with a value which is close to zero. 

This sparsity is introduced due to other ROI influence on target ROI and temporal BOLD time 

series correlation. To keep 𝜉 𝑛  more close to the sparse parameter of the network ξ, a Kullback-

Leibler divergence sparsity constraint is introduced:  

 𝐾𝐿 𝜉 ∥ 𝜉 𝑛 

𝑆𝐿

𝑛=1

=   𝜉 log
𝜉

𝜉 𝑛
+  1 − 𝜉 log

1 − 𝜉

1 − 𝜉 𝑛
 

𝑆𝐿

𝑛=1

  

(6.2) 

In order to train components to learn the neighbor influence on local temporal properties from 

BOLD time series data, K-L sparsity constraints are imposed. Therefore, temporal-constrained 

convolution (k associated channels) property is defined for 𝑋𝑡  such as: 

𝐹𝑚 ,𝑛
𝑘 = 𝜎 𝑊𝑚

𝑘 ∗ 𝜒𝑚
𝑡 ∗ 𝜒𝑛

𝑡 ∗ 𝐾𝐿 𝜉 ∥ 𝜉 𝑛    

=   𝑊𝑚 ,𝑙
𝑘 𝑋𝑚 ,𝑙

𝑡 𝑋𝑛 ,𝑙
𝑡  𝛼 𝐾𝐿 𝜉 ∥ 𝜉 𝑛 

𝑆𝐿

𝑛=1

 

𝐿−1

𝑙=0

                                                  

(6.3) 

where 𝑊𝑚
𝑘  represents the learning weights  1 × 𝐿  for the 𝑘𝑡   kernel, 𝜒𝑚

𝑡  and 𝜒𝑛
𝑡  are time series 

sections for 𝑚𝑡and 𝑛𝑡  ROIs respectively and 𝐹𝑚 ,𝑛
𝑘  is the learned correlation between 𝑚𝑡and 

𝑛𝑡  ROIs.    

Hub regions frequently form distinct contributions to gross distribution of functional 

connectivity. Hence a specific set of filters for each ROI is learned and further shared across 

diverge time frames to identify and distinguish hub regions. Considering K channels for each 

segment, a dynamic K functional connectivity network is constructed. The connections between 

seed ROI and remaining (N-1) ROI are learned in data-driven manner via equation (6.2) and the 

connectivity between each ROI with itself is set to 0. Thus from equation (6.3), sparse 

constrained whole brain hippocampus dependency is estimated.  
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6.2.2   Experimental Results       

 

In this research work, the preprocessed brain images have been collected from brain imaging 

data structure (BIDS) database available in openneuro repository (accession number ds002422). 

The functional MRI dataset chosen for simulation is resting state analysis to reduce 

psychological artifacts. This is done due to estimation of MCI progression from brain network 

connectivity. The experimental simulation is done using MATLAB based Statistical Parametric 

Mapping (SPM12) software and Resting-State fMRI Data Analysis (REST) toolkit.  

To reduce the effect of motion related physiological artifacts, many confound factors are 

regressed before functional connectivity analysis. The preprocessing data path is set for volume 

and surface based analysis in MNI (Montreal Neurological Institute standard atlas) space with 

repetition time 3.56 seconds and interleaved Siemens slice order. The structural overlay over 

functional response during preprocessing is analyzed with harvard oxford cortical atlas. 

Furthermore, the quality assurance check is confirmed over plotted overlay with MNI boundary. 

Settling down the covariates is done with frame wise displacement parameter and head motion 

movement parameters. The structural and functional data are set parallel with conservative 

thresholding in normative sampling to retain maximum BOLD particulars for each subject. For 

default tissue probability map, a structural target resolution is set as 1 mm and functional target 

resolution as 2 mm with settling appropriate bounding box. Moreover, the ROI to ROI dynamic 

connectivity regression analysis for proposed algorithm is implemented. The polynomial 

expansion adds higher ability of handling detrending and despiking for the regressor.      
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Fig. 6.2 BOLD signal traces in carpet plot and ART time series 

To trace the physiological connection between different brain regions and hippocampus, it is first 

identified by the simulator. Fig. 6.3 and 6.4 depict the simulation results that automatically fetch 

the hippocampus region for each subject. 

 

 

Fig. 6.3 Right hippocampus identified by proposed algorithm 
 

 

Fig. 6.4 Left hippocampus identified by proposed algorithm 
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Finally the correlation of blood-oxygen levels for a large set of two hundred thirty one ROIs is 

analyzed for whole brain to find out hippocampus dependency map. Fig. 6.5 and 6.6 respectively 

identify right hippocampus and left hippocampus connectivity where the red links represent 

significantly correlated and the blue links represent significantly negative ROI connectivity with 

selected seed. It is observed from the executed results that the right hippocampus and left 

hippocampus have most likely correlations. This is found because of functional homogeneity 

between right hemisphere and left hemisphere.                    

 

 

Fig. 6.5 Right hippocampus connectivity with different ROI 
 

 

Fig. 6.6 Left hippocampus connectivity with different ROI 

A three dimensional transparent brain with all the nodes overlay connecting right hippocampus 

and left hippocampus is displayed in Fig. 6.7 and 6.8 respectively. The large set-study regarding 

transparent brain connectivity analysis shows both hippocampus regions posses higher 

correlation coefficient with medial temporal lobe. The significant correlation between the nodes 

as a whole in connector ring is displayed in Fig. 6.9 where any pair of ROI connectivity can be 
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studied. 

 

 

 
 

Fig. 6.7 Proposed right hippocampus connectivity identification in 3D 

 
 

Fig. 6.8 Proposed left hippocampus connectivity identification in 3D 
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Fig. 6.9 Simulated whole brain cluster set connectivity montage (No of clusters: 231) 
 

6.3 Hippocampus-Parahippocampus Functional 3D Connectivity 

Modeling  

6.3.1   Methodology 

Structural and functional Rf-MRI images corresponding to different subjects are arranged in 

parallel for input test set. Neuronal activity of hippocampus is severely degraded due to 

progression of MCI. Parahippocampus is regarded as a major neighbourfield attached to 

hippocampus in temporal lobe. It is also responsible for memory organization and retrieval in 

association with hippocampus. The degraded hippocampal memory handling capability with 

progression of MCI must be reflected as functional connectivity in parahippocampal 

associability in resting state. In this section, a hippocampus-parahippocampus functional 

connectivity has been studied which can be divided into subsections such as: data acquisition, 

preprocessing, denoising, FC mapping on target ROI and result analysis.         
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Fig.6.10 Complete architecture of proposed framework expanding drift regression modeling 

Let us consider that for a particular subject, the Rf-MRI time series data is represented by  

𝕏 =  𝑓1,𝑓2 ,… ,𝑓𝑁 
𝑇 ∈ ℝ𝑖×𝑗 , where each vector 𝑓𝑖 ∈ ℝ

𝑀   𝑖 = 1,… ,𝑁  is associated with BOLD 

estimation of 𝑖𝑡  ROI at M successive time point. 

Based on BOLD time series data, a hippocampus to parahippocampus quadratic detrending 

connectivity learning model is formulated which is capable to figure out AD progression. 

Initially, the normalization of BOLD time series is done for each ROI of interest: 

𝑁 𝑓𝑖 =
 𝑓𝑖 − 𝜇𝑖 

𝜎𝑖
   

(6.4) 

where 𝜇𝑖  and 𝜎𝑖   𝑖 = 1,… ,𝑁   respectively identify the mean and standard deviation of BOLD 

time series signal for 𝑖𝑡  ROI. 

In order to put together the proposed quadratic detrending, the main objective becomes 

optimizing 𝑓: 𝕏 → ℝ, where 𝕏 represents a metric space. Let us consider 𝑓 is the Borel 𝛼 −field, 

𝜇  is a measure on 𝕏  and 𝑓  is 𝜇  measureable. 𝜗  expresses any monotonically increasing set 

function on 𝔽 which can be represented as 𝜗 𝐴 ≤ 𝜗(𝐵) for any 𝐴,𝐵 ∈ 𝔽 and 𝐴 ⊆ 𝐵. Moreover, 

𝑓 is transformed to an invariant cost function which is defined as 𝑉𝑓 :𝑥 → 𝜗[𝑦: 𝑓(𝑦) ≤ 𝑓(𝑥)]. A 

family of probability distribution 𝑃휃  is considered on 𝕏. A quasi objective function 𝐽  in the 

parameter space 𝛩 with the expected value of  𝑉𝑓  over 𝑃휃  can be expressed as:  

𝐽 휃 =  𝔼𝑋~𝑃휃
 𝑉𝑓 𝑋    

(6.5) 

The natural gradient is calculated with respect to the Fisher metric, which is the inverse 

component of Fisher information matrix 𝐼휃  and vanilla gradient ∇J(휃) of the function. Hence the 



 

 

126 

 

natural gradient of J is 𝐼휃
−1∇𝐽(휃). The parameter update rule can be formulated as  

휃𝑡+1 = 휃𝑡 − 휂𝑡𝐼휃 𝑡
−1∇𝐽 휃𝑡   

(6.6) 

where learning rate is expressed by 휂𝑡 .   

The main objective is to focus on optimizing 𝑓:𝕏 → ℝ, where 𝕏 is in metric space. So, it can be 

conferred as 𝕏 = ℝ, where 𝜇 𝑎𝑛𝑑 𝔽 are Lebesgue measure on ℝ and Borel σ-field on ℝ. Let us 

choose the sampling Gaussian distribution 𝑃휃  (휃 ∈ 𝛩) where mean vector 𝑚(휃) is in ℝ and the 

covariance matrix 𝐶(휃) is a 𝑑-dimensional positive definite and symmetric matrix.  

Now the invariant cost 𝑉𝑓(𝑥) is defined with the help of Lebesgue measure 𝜇𝐿𝑒𝑏  as: 

𝑉𝑓 𝑥 = 𝜇𝐿𝑒𝑏
𝑑/2 𝑦: 𝑓 𝑦 ≤ 𝑓 𝑥    

(6.7) 

The infinitum of  𝐽 휃 = 𝔼𝑋~𝑃휃
[𝑉𝑓(𝑋)] becomes zero which is located on boundary contour of 

the domain 𝛩 where the covariance matrix is zero and mean vector becomes equal to the global 

minimum of 𝑓.    

The parameterization of Gaussian distribution 𝑃휃  puts an impact on natural gradient update with 

learning rate 휂𝑡 . Covariance matrix and mean vector are chosen as the parameters of the 

Gaussian distribution. Let us have 휃 = [𝑚𝑇 , 𝑣𝑒𝑐(𝐶)𝑇]𝑇 , where 𝑣𝑒𝑐(𝐶)  represents the 

vectorization of  𝐶 : [{𝐶} 𝑖 ,𝑗  ≡ {𝑣𝑒𝑐 𝐶 }(𝑖+𝑑 𝑗−1 )] [10]. Analytical form of Fisher information 

matrix is given by: 

𝐼0 =  
𝐶−1 0

0
1

2
(𝐶−1 ⊗𝐶−1)

   

(6.8) 

where ⊗ represents the Kronecker product operator. On some regulatory conditions, we have  

∇𝐽 휃 = 𝐸𝑋~𝑃휃
 𝑉𝑓 𝑋 ∇𝑙∇(휃;𝑋)  

(6.9) 

where 𝑙 휃, 𝑥 = 𝑙𝑛𝑝휃(𝑥) is long likelihood. The long likelihood of 𝑙 휃, 𝑥  can be expressed as  
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∇𝑙 휃, 𝑥 =  
𝐶−1(𝑥 − 𝑚)

1

2
𝑣𝑒𝑐(𝐶−1 𝑥 − 𝑚  𝑥 − 𝑚 𝑇𝐶−1 − 𝐶−1)

   

(6.10) 

Now the natural gradient becomes  

Iθ
−1∇𝐽 휃 =  𝛿𝑚𝑇 ,𝑣𝑒𝑐 𝛿𝐶 𝑇 𝑇   

(6.11) 

At 휃 = 휃𝑇 , natural gradient can be expressed by part such as:  

𝛿𝑚𝑡 = 𝔼𝑋~𝑃휃𝑡
 𝑉𝑓 𝑋 (𝑋 −𝑚𝑡)  

(6.12) 

𝛿𝐶𝑡 = 𝔼𝑋~𝑃휃𝑡
 𝑉𝑓 𝑋 ( 𝑋 − 𝑚𝑡  𝑋 − 𝑚𝑡 𝑇 − 𝐶𝑡)   

(6.13) 

For different learning rates in natural gradient algorithm, the mean vector and covariance matrix 

update can be formulated as:  

𝑚𝑡+1 = 𝑚𝑡 − 휂𝑚
𝑡 𝛿𝑚𝑡  𝑎𝑛𝑑  𝐶𝑡+1 = 𝐶𝑡 − 휂𝐶

𝑡 𝛿𝐶𝑡   

(6.14) 

This is regarded as deterministic natural gradient descent (NGD) method. Now the stochastic 

NGD algorithm can be approximated to the ideal value as the size of 𝑛 becomes sufficiently 

large. Therefore, the NGD algorithm converges on convex quadratic detrending function and 

takes down the form as: 

𝑓 𝑥 =  𝑥 − 𝑥∗ 𝑇𝑃 𝑥 − 𝑥∗ + 𝑓∗ 

(6.15) 

where P is positive definite symmetric matrix, 𝑥 is variable input set and 𝑥∗ is considered as the 

global optimum solution. 

A dynamic detrending functional connectivity network is constructed between hippocampus and 

parahippocampus in a data-driven manner with zero initialization weight settling via eq. (6.15).         

6.3.2   Experimental Results 

In this research work, the preprocessed MRI brain images are collected from brain imaging data 
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structure (BIDS) database which is available at openneuro repository (accession number: 

ds002422). In particular, the resting state functional MRI dataset is chosen to reduce 

psychological artifacts. Rf-MRI analysis also provides the precision accuracy required to 

estimate MCI progression. Experimental simulations are executed in MATLAB based Statistical 

Parametric Mapping software (SPM12) and Resting-State fMRI Data Analysis (REST) toolkit.  

 

To model both complex scanner drift constraints and longer scan sessions, several confound 

factors are regressed in FC analysis. The volume and surface based analysis in MNI space for 

preprocessing data path is set with repetition time of 3.56 seconds and interleaved Siemens slice 

order. The functional response on top of structural overlay during preprocessing is analyzed with 

harvard oxford cortical atlas. Moreover, the quality assurance is checked overlay within MNI 

boundary. The structural and functional MRI data is analyzed in parallel with conservative 

thresholding in normative sampling. This process conserves maximum of BOLD properties for 

each subject. Proposed quadratia detrending is further formulated and implemented. A three 

dimensional dynamic FC between hippocampus and parahippocampus is executed in the context 

of proposed regression analysis. The quadratic components in deternding expansion provide 

higher ability of modeling drift constraints and despiking.    

 

Prominent functional connectivity between different brain ROIs and parahippocampus is first 

identified by simulator. Fig. 6.11 to 6.14 has depicted the automatically fetched 

parahippocampus connectivity network for both anterior and posterior sections. Depending on 

BOLD statistics, two hundred and thirty one significant ROIs have been analyzed in each 

simulation. In the resultant connectivity mapping, blue links represent significantly negative 

correlations and red links signify prominently correlated connectivity pairs.   

 

Simulated 3D transparent brain module on multiple view angle is displayed in Fig. 6.15 to 6.18.  

All prominent nodes connectivity overlay with parahippocampus sub-regions is identified and 

demonstrated. The hippocampus connectivity overlay with all prominent nodes is exhibited in 

Fig. 6.19 and 6.20 which is quite similar to parahippocampus. It is observed from brain 

connectivity analysis that hippocampus-parahippocampus gyrus sub-regions have higher FC 

correlation with medial temporal lobe. The final simulated output that correlates all possible 
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hippocampus-parahippocampus subfield combination in terms of connectivity strength is 

displayed in Fig. 6.21. It is observed that most likelihood correlation is found between left 

hippocampus and right hippocampus. Significant correlation between all major paired ROIs as a 

whole in a connector ring format is studied and displayed in Fig. 6.22. This study additionally 

helps to understand the overall hippocampus-parahippocampus dependency in resting state 

condition.   

 

 

Fig. 6.11 Parahippocampus functional connectivity link (anterior left) 

 

 

Fig. 6.12 Parahippocampus functional connectivity link (anterior right) 
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Fig. 6.13 Parahippocampus functional connectivity link (posterior left) 

 

Fig. 6.14 Parahippocampous functional connectivity link (posterior right) 
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Fig. 6.15 Parahippocampus functional connectivity in 3D (anterior left) 

 

Fig. 6.16 Parahippocampus functional connectivity in 3D (anterior right)  
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Fig. 6.17 Parahippocampus functional connectivity in 3D (posterior left) 

 

Fig. 6.18 Parahippocampus functional connectivity (posterior right) 
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Fig. 6.19 Left hippocampus functional connectivity in 3D 

 

Fig. 6.20 Right hippocampus functional connectivity in 3D 
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Fig. 6.21 Functional connectivity measure between all parahippocampus and hippocampus subfields 

 
 

Fig. 6.22 Cluster set connectivity montage of whole brain (No of clusters: 231) 
 

6.4   Discussion  

In the first phase of this chapter, a robust nonlinear K-L sparsity constrained FC model is 

implemented successfully for brain connectivity analysis. The presented model not only 

identifies high-order sparse dependency patterns but also recognizes major ROIs to learn spatial 
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correlation. The algorithm executes the Rf-MRI data simulation by considering hippocampus as 

the seed ROI. Hence, the entire process leads to the identification of cognitive degradation due to 

MCI. The presented method produces a promising outcome that models whole brain 

hippocampus connectivity in 3D. In the second phase of this chapter, a robust quadratic 

detrending based hippocampus-parahippocampus interactive 3D functional connectivity model is 

executed successfully to figure out early sign of MCI. The presented algorithm models complex 

scanner drift constraints and it is capable to handle constraints in longer scan sessions for elder 

and young subjects. The presented algorithm runs on Rf-MRI data and considers hippocampus 

and parahippocampus subfields as pair ROIs for FC analysis. The simulated results demonstrate 

a promising outcome which models hippocampus-parahippocampus functional connectivity.       
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Chapter 7 

Conclusion & Future Scope of Work 

 

This thesis proposes and successfully implements several novel brain image processing 

algorithms which can potentially help us to diagnose Alzheimer‟s disease at an early stage. As of 

now, MRI analysis is considered to be the most efficient non invasive tool for AD diagnosis. In 

connection to this, high end application specific algorithms are expected to be developed which 

will provide necessary features like advanced edge detection, robust clustering algorithm or 

improved functional connectivity model etc. Traditional approaches of image processing provide 

satisfactory results for standard images. On the other hand, brain MRI scans are low pixel 

density images where exact detection of regional information is very challenging for MCI 

identification or estimating AD progression. In this work, state of the art fuzzy based edge 

detection, LV classifier & clustering tools are presented which can overcome the challenges by 

eliminating proxy edges or noise interventions. Additionally, advanced mathematical models are 

proposed which are implemented to model Rf-MRI data based hippocampus associated whole 

brain functional connectivity for accurate detection of MCI. In brief, major contributions of the 

thesis are summarized as follows:  

 A novel fuzzy pixel intensity correlation based brain MRI segmentation algorithm for 

early detection of Alzheimer‟s disease 

 A composite implementation of robust morphological filtering and self adaptive fuzzy 

c means clustering algorithm for segmentation of lateral ventricle 

 An adaptive neighbor constrained deviation sparse fuzzy c-means clustering algorithm 

for brain MRI scans 

 A robust Kullback-Leibler (K-L) divergence based sparse constrained regression 

model to study hippocampus associative functional connectivity structure 

 An interactive hippocampus-parahippocampus functional 3D connectivity modeling 

with quadratic detrending 
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In a nutshell, this chapter briefly accumulates the technical advancements achieved through this 

research work. Concluding remarks on presented algorithms and scope of future research are 

further discussed.  

7.1    Concluding Remarks  

As the first contribution of this work, a novel fuzzy method is presented which follows the 

natural correlation of pixel properties that exist in edges of an image object. Proposed algorithm 

finds the connected edge contour based on image pixel intensities for brain MRI scans of AD 

subject. The executed algorithm, together with a robust image opening and morphological 

gradient, reveals promising improvement in detecting object edges more accurately. In this 

context, a robust fuzzy rule base and fuzzy inference system is designed and successfully 

implemented where a fuzzy pixel intensity weight-based topological selection of adjacent edge 

pixels has been initiated to achieve higher-order precision. The presented scheme emphasizes on 

settling up the primary edge pixel and finds out the next adjacent edge pixel dynamically based 

on correlation properties. Finally, the sorted out edge pixels are accumulated in a form of pixel 

matrix to settle an impression of edge contour. The presented strategy leads to trace early loss in 

tissue volume and helps us to detect the occurrence of AD.  

As the second contribution of this work, lateral ventricle segmentation in brain MRI is focused 

since morphological changes of LV like hypertrophy exhibit very close relation with AD 

progression. This task becomes more challenging due to the presence of tinny or proxy edges, 

low contrast and noise in overlapping regions. In the presented work, a robust morphological 

filtering process is initiated which can eliminate noise, focus on ROI and avoid over estimation 

in image object boundary as well. Moreover, a self adaptive FCM clustering algorithm, ACWE 

algorithm and a RG algorithm is executed to segregate ventricular region. This unique 

combination of different algorithms provides an excellent improvement over LV region 

segmentation both qualitatively and quantitatively.   

As the third contribution of this work, a novel FCM clustering algorithm is presented to trace 

MCI related tissue loss in medial temporal lobe and associated enlargement of LV. In execution 

of the proposed process, the rician noise is initially incorporated and sparsity is initiated in 

proposed clustering method in MR scans of AD subject. Secondly, a novel neighbor pixel 



 

 

138 

 

constrained FCM clustering algorithm is designed and implemented where topology dependent 

selection of parsimonious neighbor pixel is automated. The adaptability in selection of neighbor 

pixel class provides most justified object edge boundary which outperforms other clustering 

methods. The presented adaptive neighbor constrained deviation sparse variant fuzzy c-means 

clustering (AN_DsFCM) is capable to withhold imposed sparsity and efficiently withstands 

rician noise. The experimental outcomes are compared with state-of-the-art fuzzy clustering 

methods for standard MRI scans and normative data where visual evaluation and statistical 

measures meet both image processing and clinical neurophysiology standards.  

In the first phase of fourth contribution of this work, an automated diagnosis of Rf-MRI based 

retrieval of FC among various hubs of human brain is developed to estimate the progression of 

MCI. The sparse constraint becomes predominant for functional connectivity in Rf-MRI 

particularly due to motion related artifacts during MRI acquisition, noise intervention and several 

other reasons.  A unique Kullback-Leibler (K-L) divergence based sparse constrained regression 

model is implemented which develops a framework that identifies and analyzes connectivity 

between hippocampus and other significant ROIs of the brain. Simulation outcomes reveal 

promising improvement in FC measures of hippocampus subfields.  

In the second phase of the fourth contribution of this work, an algorithm on a three dimensional 

FC analysis between hippocampus and parahippocampus is presented to trace MCI consequent 

FC degradation. The semantic and episodic memory is formulated in MTL with hippocampus 

and associated subfields like parahippocampus, perirhinal and entorhinal neocortical subfields. A 

novel quadratic detrending process is incorporated to model both complex scanner drift 

constraints and longer scan sessions. The motion related artifacts and noise interventions are also 

well handled by presented framework. Functional connectivity between each hippocampal 

subfield and parahippocampal subfields in its entirety are examined.  

7.2    Future Scope of Work  

In this thesis, different advancements of fuzzy based MRI and Rf-MRI data analyzing tools have 

been developed to meet the precision required for early detection of AD.  

There are no significant limitations in the first and third contribution of this work as both the 

presented methods show their supremacy over other state-of-the-art techniques. The second 
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contribution of this work lacks in providing the lateral ventricle volume information as this 

method is limited by providing only 2D outcomes. Further development of 3D modelling of 

presented method will make the MCI classification process more robust. The fourth contribution 

of the presented work lacks in incorporating the FC interactions in MTL associated major ROIs. 

An in depth study of FC between MTL sub regions and whole brain significant ROIs will help to 

understand the information sharing degradation due to MCI intervention.      

Algorithms demonstrated in this thesis fundamentally advance the image processing tools which 

can also be potentially implemented to trace other neurodegenerative diseases. In view of further 

advancements of more efficient diagnostic tools, some of the possible future scopes are discussed 

below:  

 

 Detection of AD may also be targeted in future with the aid of other soft computing 

tools like neural network and machine learning approaches. The presented fuzzy based 

algorithm may be fused with deep learning technique; thus allowing large scale feature 

learning to explore higher accuracy for neuro-image classification or segmentation. 

Similarly, the combination of sparse representation and presented algorithms can be 

modeled to come up with better tools for brain image classification in future.            

 A three dimensional modeling of lateral ventricle can be developed so that MCI can be 

predicted much more precisely. In addition to this, better filtering technique or higher 

order modeling of fused FCM clustering algorithm can also achieve better results in 

this context. 

 Evaluation of presented FC algorithms on larger data can be further developed with 

machine learning or other soft computing based approaches to enhance the diagnosis 

standard for AD and other neurological diseases. A rigorous modeling on larger dataset 

can provide better disease specific diagnosis accuracy.           


