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OBJECTIVE OF THE STUDY 

This study was aimed at producing bioethanol, which is an alternative to fossil fuel, by 

utilizing agro-industrial waste bagasse. Bagasse is a waste generated in sugar processing and 

juicing of sugarcane, and it is often openly dumped in the environment causing solid waste 

accumulation and microbial invasion. The dumped bagasse contains some nutrients, which 

can be reused in some other forms of valuable products. In this current study, at first selection 

was made among some of the easily available food processing and agriculture wastes. Then 

the selected waste i.e., bagasse was water-extracted in order to solubilize sugars, and the 

aqueous extract was used as a substrate for fermentation. Fourier Transform Infrared 

Spectroscopy was performed on the aqueous extract for its compositional analysis, and a 

comparison between wet and dry bagasse extracts on various parameters were carried out. 

The optimization of fermentation conditions like pH, time, temperature, inoculum age and 

size were also performed. Nutritional supplementations using carbon source, nitrogen source 

and mineral source were optimized as well. Cumulative effects of all these factors were also 

studied using statistical approach that was helpful to optimize ethanol yield, which was 

measured by titrimetric method. Since product recovery and reusability of the fermenting cell 

was necessary, immobilization of cells were done using suitable matrix. Optimization of 

immobilized cell fermentation was carried out using the previously optimized conditions. 
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PLAN OF WORK 

Chapter 1: Selection of different wastes generated in different food processes or food 

industries 

Some of the wastes will be selected based on their availability and amount of production and 

among them the best one will be selected based on reducing sugar content and ethanol 

production. 

Chapter 2: Treatment of wastes to make them suitable as substrate for fermentation 

The selected waste will be pre-treated by suitable method to ensure increase in ethanol yield 

after pre-treatment process. 

Chapter 3: Optimization of the fermentation conditions utilizing bagasse extract 

The conditions under which fermentation will be carried out will be optimized on the basis of 

the following parameters: 

 pH 

 Fermentation time 

 Fermentation temperature 

 Inoculum size 

 Inoculum age 

Chapter 4: Optimization of the nutritional parameters for the fermentation process 

The conditions under which nutritional supplementation will be carried out will be optimized 

on the basis of the following parameters: 

 Carbon source 

 Nitrogen source 
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 Mineral source 

Chapter 5: Ethanol production from immobilized cells of Saccharomyces cerevisiae 

MTCC 180 

Cells of the fermenting organism will be immobilized in a suitable matrix and optimization of 

the conditions under which the immobilized cells will produce ethanol, will be carried out. 
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A. WHAT IS AGRO-INDUSTRIAL WASTE 

 

Population increase in certain parts of the world coupled with tendency towards urban 

migration has resulted in an increased demands for food and agriculture, which in turn 

generated large amounts of agricultural wastes at all levels. In many developing and 

underdeveloped countries, the agricultural produce is transported from rural areas, where they 

are cultivated and harvested, to cities mostly in unprocessed forms leading to significant 

losses of these produce. These food processing and agricultural wastes can be both solids and 

liquids, and are generated from the production, harvesting, transportation, handling, 

preparation, and/or consumption of food. Wastes are also generated through disposal of 

already treated waste after its secondary utilization. Due to lack of planning, poor public 

awareness, lack of sound Government policies, and insufficient utilization of resources, 

agro-industrial waste accumulation have become one of the major roadblocks to cleaner 

environment [1-3].  

A substantial portion of the global food production, about 1.3 billion tons, i.e., one third of 

the total food production are lost or wasted annually. Among these, wastages of fruits and 

vegetables, roots and tubers the highest value that amounts to 520–650 million tons every 

year. In the European Union alone, 89 million tons of foods are wasted per year, while total 

agricultural residue production amounts to 367 million tons per year [3]. Additionally, it has 

been estimated that 147.2 million tons of fibre residues; whereas 709.2 and 673.3 million tons 

of wheat and rice straw residues, respectively, are generated, as part of agro-industrial wastes.  

The enriched characteristics of these residues has enabled them to be used as substrate for 

new product innovation and development. These nutrient rich primal matters are fitting 

substrates that can be recycled and/or reused through solid state or submerged microbial 

fermentation to produce various high-value, useful products[2]. 
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B. SIGNIFICANCE AND EFFECTS OF FOOD WASTE GENERATION ON 

ENVIRONMENT 

The earth is equipped with a natural cycle, by which it maintains environmental equilibrium, 

and recover from routine environmental degradation in a systematic manner. For example, 

forest soil is rich and fertile due to biomass recycling of leaves and other plant and animal 

residues that falls on it.  This natural enrichment of soil has resulted in massive deforestation, 

to avail fertile land for enhancing agricultural production. The process of agricultural 

production in turn, generates loads of wastes, which have been, and can be recycled into 

some forms of usable products or substances. For example, rice straw is one of the 

agricultural wastes, which is used to make roofs of huts, and to feed livestock since ancient 

times. The twigs and small branches of trees were utilized as fuel for millennium. 

Agricultural and processing wastes are also composted to produce organic fertilizers, which 

are profusely used by farmers, as organic foods are gaining market all across the globe. This 

process has helped many poor farmers to decrease their production cost sustaining their soil 

fertility [1] [4].The raw material source decides the composition and quantity of agro-

industrial wastes along with the nature of the products, manufacturing operations, and 

processing steps. In general, these wastes have high values of Biochemical Oxygen Demand 

(BOD), Chemical Oxygen Demand (COD) and suspended solids causing severe water, soil 

and air pollution problems, if not properly managed or treated prior to disposal.  

 Water Pollution: It is caused by highly biodegradable effluents having soluble organic 

compounds that are difficult to remove chemically or by pigments in various disposed 

wastes that causes water discoloration or by putrescible liquid wastes that cannot be 

stored for long. Effluent from edible oil processing contains high concentrations of 

suspended fats, oils, and/or floating grease. They usually have very high BOD5, 

suspended solids, dispersed organics and dissolved solids. Some of the common 
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examples are whey from dairy industry, brine from pickle manufacturing, and wash 

water from livestock, which are rigged with organic, inorganic matter, microorganisms 

and parasite eggs.  

 Solid waste accumulation: Frozen and canned meat or muscle products may form 

putrescible wastes from peeling and trimming or screening operations. These wastes 

need to be treated quickly to convert them into by products such as fertilizers and/or 

feed. Peanut and cocoa industries accumulate large quantities of shells and hulls 

whereas tea chest, spent tea and coffee grounds are primary by products of tea or coffee 

manufacturing industries. Processing of poultry, crab, shrimp or fish produce large 

quantities of shells, entrails, offal, feathers, fins, etc., which are commonly utilized to 

manufacture animal feed. 

 Air Pollution: Odours and smoke from processing operations, wastewater treatment, 

solid waste disposal, visible moisture from steam plumes, entrained particulates, etc. 

can cause air pollution, if not properly treated, maintained, utilized (where appropriate), 

and/or disposed. Particulate emissions from handling of beans, food grains, or pomace 

may discharge occasional toxin(s) or specific allergen(s). Roasting odour from tea, 

coffee or chocolate industries and odours emanating from cages or burns, as a result of 

accumulation of livestock wastes, putrefaction of organic matter in manure, animal 

urine, and/or from redundant feed are some of the routine causes of air pollution from 

agriculture, and agro-based industries [4] [5]. 

These organic wastes forms rich biomass that may support or promote growth of 

microorganisms including human pathogens, if left untreated and/or inadequately treated. 

These untreated and unutilized wastes are often either dumped in the open or burned in 

landfills. Burning of these waste releases pollutants like carbon monoxide, nitrous oxide, 

nitrogen dioxide and carbon particles, accompanied with formation of ozone and nitric acid. 
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These chemicals gets mixed up in soil and water streams causing acid deposition that may 

compromise ecological balance.  Some of these components leaches from the dumping 

ground and landfills, and pollute water bodies resulting in invasion of water weeds. [6-8].  

C. TYPES OF WASTES FROM FOOD AND AGRICULTURAL SECTOR 

 

Food and agricultural sector have huge prospects of industrialization / commercialization of 

waste utilization, including utilization of secondary and tertiary wastes to produce valuable 

by-products. Although, it may or may not be possible to get rid of hundred percent of the 

agriculture and food processing wastes even after recycling, but their minimization in the 

environment is a rather logical and achievable goal.  The following table lists some of the 

major staple and industrial crops with the residues they generate annually (Table 1).  

Table 1. Agricultural residues for staple crops and industrial crops [5] 

Staple crops 

Name of the crop                         Crop residue rate (%)                     Crop residues (kg) per 1000 tons                              

Rice                                                            55                                                        21,298 

Maize                                                        250                                                       11, 328 

Sweet Potato                                              45                                                              595 

Cassava                                                      75                                                            7,046 

Total                                                                                                                        40, 269 

Industrial Crops 

Sugarcane                                                  65                                                           10,483 

Peanuts                                                       20                                                             106 

Soybean                                                      10                                                               26 

Total                                                                                                                          10,616 

 

Livestock rearing creates solid wastes such as manure and other organic materials, liquid 

wastes like urine, wash water (for bathing of animals) from cage, barn, and/or slaughter 

houses. Most of these spontaneously developed farms lack proper treatment facilities for 

these wastes, and thus cause serious pollution problems. 
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Table 2. Generation rate of solid waste from breeding activities [5] 

Animal 
Cow Buffalo Pig Poultry Goat, sheep Horse Deer 

Average 

value(kg/head/day) 

18 15 2 0.2 1.5 4 2.5 

 

 

According to the Department of Animal Health (DAH), India, stored manure (25%) is 

collected and packaged for sale to targeted consumers who will use it as fertilizer or fish 

food; 20% is recycled for biogas production, 10% is for composting, and remaining 45% is 

discharged into the environment without any treatment. This waste can generate greenhouse 

gases, and also cause water pollution. Animal manure may contain various microorganism 

and parasite eggs, which can survive to harm human and animal health. Additionally, farm 

wastes may include a considerable amount of redundant food residues, corpses of cattle and 

poultry, which are sources of invasion by pathogenic microorganisms. Table 2 shows solid 

waste generation rate due to breeding activity of different animals. The nature of these waste 

depends upon the feed consumed by the animal, its gender, species, hygienic practices and 

method of waste treatment followed in the animal husbandry facility [5]. While agriculture 

mainly deals with raw or unprocessed wastes from plant and animal origin, food industries 

deal with both raw materials, semi-processed and processed by products, and design their 

waste treatment accordingly.  

Based on the nature of the agro-industrial wastes generated, they may be classified into two 

broad divisions- agricultural waste and food processing waste. Agricultural wastes may 

include different wastes generated from various agricultural practices from sowing to 

harvesting, examples of which include rice straw, corn cob, cassava stem, potato peels, 

sugarcane bagasse etc. Food processing wastes may include wastes that are generated from 
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different food processing and treatment operations e.g., oil cakes, fruits pomace and skin, 

internal organs of animals, etc. The elaborate classification of these wastes is summarized in 

Figure 1 [2].However, quite understandably, the classified residues often can show 

redundancy as industrial, agricultural, or food processing wastes. Industries or agricultural 

farms may adopt different treatments or processes of handling these wastes depending on 

their choice or final utilization. 

I. Food Industry Wastes 

 

About 20% of the total fruit and vegetable production in India are wasted during the 

postharvest stage, handling and transportation from production farms to markets. Besides, 

large quantities of organic wastes and effluents are generated by beverage, edible oil, 

extruded food, flesh, sweet and savoury delicacies, green harvest processing units, and many 

others. There has been a remarkable increase in number of food and beverage processing 

industries in order to meet the increasing demands for semi-processed and processed foods. 

In edible oil industries, large amount of oil cakes, by-products of oil extraction from the 

seeds, causes air, water, and soil pollution, as they are rich in greasy pollutants. These food 

processing wastes have high BOD, COD and TSS value, which make them nutrient-rich 

media for microbial processing to produce industrially important valuables. Thus, these 

industrial residues are pre-enriched with desired nutrients, rendering them as low-cost 

alternative substrates for fermentation, and thus, can be cost effectively utilized as a source 

[2].  

II. Agricultural wastes 

 

Agriculture wastes are two types-those generated as land residues and processing residues. 

Land residues are post-harvest wastes composed of green leaves, plant parts etc.; the 

processing residues belong to post-processing wastes such as molasses, bran, bagasse, other 
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by products etc. that can be utilized in making forage, improving fertility of topsoil, making 

up fertilizer etc. 

 

Figure 1: Different types of agro-industrial wastes produced from different sources 

They can improve the irrigation process and can control soil erosion as well. These 

phytomass consist of cellulose, hemicellulose and lignin, which are strongly bound by 

chemical cross-linking, and are also termed as lignocellulose (LCB) accumulation. They are 

also rich in starch, and both lignocellulose and starch can be converted to biofuels or 

biopolymers, as important renewable resources. Two types of extracellular enzyme systems 

to utilize agricultural residues such as sugarcane bagasse, wheat bran, rice bran, corn cob, 
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wheat straw etc. are hydrolytic (polysaccharide degradation) and ligninolytic (lignin 

degradation that opens phenyl rings) enzymes, used to produce bio-alcohol [2]. Fermentation 

is a cost-effective process of utilizing low-value substrates like agricultural wastes, as 

potential alternatives to the traditional method of acid hydrolysis [9]. 

 

D. REUTILIZATION OF WASTE 

 

Most of the agro industrial wastes are either directly used as a raw material or are pre-treated 

to a suitable material or ingredient to be processed into different valuable products. 

Fermentation is one such commonly used process to manufacture industrially important 

products from these wastes. Figure 2 is a flow-diagram that illustrates the fate of waste 

products to generate industrially important materials. 

Figure 2. Flow diagram of fate of processing of agro-industrial and food processing wastes 

 

The other wastes can be thoroughly pre-treated or minimally treated to either make it suitable 

for fermentation or can be directly used as animal feed. The pre-treatment may include 

physical treatments like cutting, grinding, size reduction and steam digestion, or chemical 

treatments like acid or alkali hydrolysis, enzyme treatment, solvent extraction / treatment etc.  
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These pre-treatment converts the complex compounds in these wastes into simpler, easily 

degradable molecules, which are metabolized by microorganisms to generate primary and 

secondary metabolites. 

 

E. MANUFACTURE OF INDUSTRIALLY IMPORTANT PRODUCTS FROM 

WASTE 

The valuables that can be generated by processing of these wastes may have therapeutic or 

medicinal values; may be utilized in various chemical or pharmaceutical industries; may be 

used to make some regional cuisines or simply utilized to produce solid, liquid or gaseous 

biofuels (Table 3).  

 

Table 3. Production of different industrially important products from agriculture and food 

wastes 

Name of the waste 
Nature of fermentation with 

microorganism 
Product generated Ref. 

Antimicrobial/ Anticancer/ Antioxidant  

Pineapple waste Solid State Fermentation 

using Kluyveromyces 

marxianus NRRL Y-8281 

Anticancer and antioxidant property of the 

methanol extracted waste 

[10] 

Apple and Avocado 

skin and residue 

Extraction Epicatechin, catechins, anthocyanins, 

quercitin glycosides, chlorogenic acid, 

hydroxycinnamates, phloretin glycosides, 

procyanidins, gallic acid, cyanidin 3-

glucoside, homogentisic acid 

[11] 

Banana peel Extraction Gallocatechin, anthocyanins, delphindin, 

cyaniding,catecholamine 

[11] 

Antibiotics 

Corn cob and pomace, 

sawdust, rice hulls, 

Groundnut shell, 

cassava peels and 

household kitchen 

waste. 

 Solid State Fermentation 

using Streptomyces 

rimosus TM-55, 

Streptomyces rimosus etc. 

Antibiotic oxytetracycline [12-

14] 

Coconut oil cake, 

groundnut oil cake, 

Solid State fermentation 

using Amycolatopsis 

Rifamycin B  [15] 
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ground nut shell and 

rice husk. 

Mediterranean MTCC 14 

Apple pomace, cotton 

seed meal, soy bean 

powder and wheat bran 

Solid State fermentation 

using Streptomyces fradiae 

NCIM 2418 

Neomycin [16] 

Regional delicacies 

Peanut press-cake 
-- 

Fermented product Oncom Kacang. [17-

18], 

Tahoo waste (Curd of 

soybean) 
-- 

Fermented product Oncom Tahoo. [17-

18], 

Hunkwe (starch flour) 

and Phaseolus radiata 

or Mungbean waste 

-- 

Fermented product Oncom Ampas Hunkwe. [19] 

Soy bean milk wastes 
-- 

Protein-rich human food like Tempeh or 

similar kinds. 

[20] 

 

Enzymes 

Agri wastes Solid state fermentation 

using thermophilic fungus 

strain, i.e., Thermoascus 

aurantiacus. 

β- glucosidaseandEndoglucanase [21] 

Corn cob Solid state fermentation 

coupled with enzymatic 

treatment using 

Sporotrichum thermophile 

Cinnamoyl esterase and xylanase [22] 

Wheat bran, green 

gram bran, black gram 

bran, corn flour, barley 

flour, jowar flour, 

maize bran, rice bran 

and wheat rawa. 

Solid state fermentation 

using Aspergillus sp. 

Amylase and Glucoamylase 

 

[23-

24],  

 

Wheat bran Solid state fermentation 

using Aspergillus awamori 

nakazawa MTCC 6652 

Amylase and Protease [25] 

Agricultural waste, 

Papaya Waste, Orange 

peel, Coconut oil cake, 

Rice bran, wheat bran, 

black gram bran, and 

soybean. 

Solid state fermentation 

using Aspergillus niger 

MTCC 104, 

Aspergillus niger, 

Aspergillus oryzae etc.  

α-amylase [26-

30] 

Rice bran and Corn 

bran 

Solid state fermentation 

using Bacillus sp PS7 

Thermostable α-Amylase [31] 

Candelilla stalks, 

coconut husks, corn 

Solid state fermentation Ellagitannase [32] 
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cobs , sugarcane 

bagasse 

using Aspergillus niger GH1 

Palm kernel oil cakes, 

Groundnut oil cake 

and Linseed oil cake. 

Solid state fermentation 

using Aspergillus ibericus. 

MUM 03.49, Penicillium 

aeruginosa and Candida 

rugosa. 

Lipase [33-

35] 

 

Wheat bran and orange 

peel 

Solid state fermentation 

using Penicillium notatum 

NCIM 923. 

Pectin methyl esterase [36] 

 

Fruits peel waste Solid state fermentation 

using Aspergillus niger 

Invertase [37] 

Organic acids 

Outer cover of gallo 

seeds 

 Fermentation using 

Rhizopus oryzae 

Gallic acid [38] 

Tea wastes with 

sugarcane molasses 

Fermentation using 

Aspergillus niger 

Gluconic acid [38] 

Wheat kernels Fermentation using 

Aspergillus oryzae 

Oxalic acid [38] 

Carrot-processing 

waste, Sweet sorghum, 

Sugarcane bagasse and 

Cassava bagasse 

Fermentation using Rhizopus 

oryzae, Lactobacillus 

paracasei and Lactobacillus 

delbrueckii 

Lactic acid [38] 

Pineapple wastes Fermentation using 

Aspergillus foetidus 

Citric acid [38] 

Organic chemicals 

Corn cob Solid state fermentation 

coupled with enzymatic 

treatment using 

Sporotrichum thermophile 

Phenolics 

 

[22] 

Orange peel waste Stirred tank reactor using 

Bacillus subtilis OK 2 

Poly-3 hydroxybutyrate [39] 

Castor oil, coconut oil, 

corn oil, motor oil, 

olive oil, olein, 

rapeseed oil, sunflower 

oil, barley bran, 

cassava flour waste, 

peanut cake, potato 

waste, rice bran and 

wheat bran. 

Pseudomonas aeruginosa 

PB3A. 

Biosurfactant [40] 

Waste like potato peel Submerged Fermentation 

using Xanthomonas 

Xanthan [41] 
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campestries MTCC 2286, 

Xanthomonas oryzae, 

Xanthomonas musacearum, 

Xanthomonas citri 

Immobilized matrix 

Ten agro wastes which 

includes creosote bush 

leaves, variegated 

Caribbean agave, 

lemon peel, orange 

peel, apple pomace, 

pistachio shell, wheat 

bran, coconut husk, 

pecan nutshell, and 

bean residues. 

Solid state fermentation in 

immobilized form 

Immobilized carrier [42] 

Salacca wallichiana 

stem 

Immobilization carrier for 

lipase production 

Immobilized matrix [43] 

Chicken egg shell 

membrane powder 

Immobilized enzyme carrier 

of β galactosidase  

Immobilization matrix of enzymes [44] 

Biomass 

16 diverse agro-

industrial wastes(Rice 

straw, Cotton waste, 

Khaya ivorensis, 

erminalia ivorensis, 

Androgon sp, 

Groundnut shell, 

Melon pericarp, 

Cassava peels, Banana 

leaves, Palm wastes, 

Con cob, Cocoa 

leaves, Coffee leaves, 

Paper wastes, Soybean 

wastes and Poultry 

manure) 

Submerged condition of 

fermentation 

Oyster mushroom species Pleurotus tuber-

regium 

[45] 

Banana stalks, Bahia 

grass, Rice and wheat 

straw. 

Solid bed of agro waste Oyster mushroom pink and grey species and 

the species Pleurotus sajor-caju 

[46,

47] 

Coffee husks Solid bed of coffee husks Oyster mushroom [48] 

Paddy straw, Sorghum 

stem, Varagu straw 

and Sugarcane trash 

Solid bed of agro waste Oyster Mushroom species Pleurotus eous and 

Pleurotus platypus. 

[49] 

Cucumber and orange 

peels 

Submerged fermentation 

using Sachharomyces 

cerevisiae 

Single cell protein (SCP) [50] 
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Pigments 

Molasses 

supplemented with 

sucrose, corn extract, 

yeast autolysate or 

extract, zinc sulfate 

and magnesium sulfate 

Fermentation using 

Penicillium oxalicum 

Arpink Red [51] 

Corn fibre material and 

the leftovers of ethanol 

processing like 

Distiller’s dry grains 

with solubles 

Fermentation using 

genetically modified  fungus 

Fusarium sporotrichioides 

Lycopene [51] 

Orange processing 

waste 

Solid state, Semi-solid state 

and Submerged fermentation 

using Monascus 

purpureus ATCC 16365 

and Penicillium 

purpurogenum CBS 113139. 

Orange pigment [52] 

Flavors 

Maize, rice, wheat, and 

sugar beet pulp by 

products 

Extraction using organic 

solvents 

Ferulic acid ( Precursor of Vanillin 

production) 

[38] 

Olive mill waste 

 

Microbial fermentation 

using Rhizopus 

oryzae and Candida 

tropicalis 

 D-limonene [53] 

Cassava bagasse, apple 

pomace, amaranth and 

soya bean 

Solid state fermentation 

using Ceratocystis fimbriata 

Fruits aroma ( mixture of Alcohol, aldehyde, 

ketones and esters)  

[54] 

Gas production 

Corn straw Pre-treatment and anaerobic 

digestion  

Biogas [55] 

Agriculture residues 

rice straw, cassava 

pulp, pineapple peel, 

decanter cake and 

empty fruit bunches 

along with Eichornia 

crassipes  and Typha 

angustifolia L.  

Pre-digested Solid state 

fermentation using natural 

microflora 

Biogas methane [56] 

Soybean straw, wheat 

stalk, ground nut 

shells, black gram 

straw and red gram 

straw. 

Digestion using concentrated 

sulphuric acid and catalysts. 

Biogas [57] 

https://www.sciencedirect.com/topics/immunology-and-microbiology/rhizopus-oryzae
https://www.sciencedirect.com/topics/immunology-and-microbiology/rhizopus-oryzae
https://www.sciencedirect.com/topics/immunology-and-microbiology/candida-tropicalis
https://www.sciencedirect.com/topics/immunology-and-microbiology/candida-tropicalis
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Solid fuel 

Grape Marc from 

winery 

hydrothermal carbonization  

to make hydro-char 

Solid biofuel [58] 

Palm oil fronds and 

trunks 

hydrothermal treatment Solid fuel [59] 

Mixture of rice husk, 

corn starch, glycerol, 

and acetic acid. 

Homogenization and oven 

drying 

Solid fuel [60] 

 

 

I. Manufacture of bioalcohol 

 

Fermentation of these organic wastes into bio-alcohol is an effective strategy to deal with 

these wastes and their environmental impact [61]. The inflation in oil market brought light to 

bioalcohol, especially bio-ethanol, bio-diesel, biohydrogen, etc. Bioalcohol can be classified 

as first and second generation. First generation are manufactured from carbohydrates, lipids 

and oils or other agro-industrial wastes using conventional methodologies, whereas second 

generation bioalcohol are derived from lignocellulosic biomass including various plant parts, 

stalks, stems, wood etc. Some of the second breed of biofuels like biological hydrogen, 

biological methanol or alcohols in blended form are still in investigation and research. It has 

been observed that greenhouse gas emission is lesser for second-generation biofuels 

compared to the first-generation [62, 63]. 

All over the world, Governments and regulatory bodies are funding and encouraging research 

aimed at innovation in this area in order to deal with the looming global energy crisis [62]. 

Bio-alcohol, especially bioethanol has very high blending capacity with petrol, and can be 

used in lower concentration in vehicles without any modifications. Since 1979, Brazil has 

significant proportion of its vehicles run purely on bioethanol, and the Brazilian economy is 
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one of the rare examples across the globe that is completely independent of imported fossil 

fuel [64]. 

II. Generation of bio-alcohol from agro-industrial and food processing waste 

 

Bio-alcohol production and consumption are mostly concentrated to the United States, 

Europe, and Brazil, Brazil being the largest producer and exporter of sugar cane, and not 

surprisingly, the second largest producer of bioethanol in the world [3]. Different methods of 

bio-alcohol generation that are possible from various wastes generated daily are listed in 

Table 4. 

 

Table 4: Bio-alcohol production through fermentation of wastes 

Name of the waste Nature of fermentation with microorganism Product  Ref. 

Vegetable’ waste like potato peel, 

carrot peel, and onion peel. 

Solid state fermentation using Saccharomyces cerevisiae 

with saccharification process by Penicillium sp.  

Bioethanol [65] 

Pseudo banana stem Co-culture fermentation with pre-treated hydrolysate of 

Aspergillus ellipticus and Aspergillus fumigatus and 

using the organism Saccharomyces cerevisiae NCIM 

3570. 

Bioethanol [62] 

Water extract of Bagasse, spent 

tea liquor and potato wash water 

Submerged Fermentation using Saccharomyces 

cerevisiae MTCC 180 

Bioalcohol [66] 

Agro-industrial waste and starch 

industry waste water. 

Fermentation using Clostridium beijerinckii Biobutanol [67] 

Straw, sawdust and corncobs Solid state fermentation using Saccharomyces cerevisiae 

NCYC 3451 

Bioethanol [64] 

Young coconut husk, custard 

apple seeds and broiler chicken 

skin. 

Modified Bligh and Dyer method and trans-

esterification  

Biodiesel [68] 

Coconut milk, pineapple juice and 

tuna juice 

Submerged fermentation using Saccharomyces 

cerevisiae strain CDBB 790 

Bioethanol [69] 

Sunflower straw and cracked olive 

stones 

Fermentation of thermo-chemically pre-treated and 

enzymatically saccharified substrate using yeast 

Pachysolen tannophilus 

Bioethanol and 

methane 

[70] 

Carob pod extract and beet 

molasses 

Solid state fermentation using Saccharomyces cerevisiae Bioethanol [71] 

Olive pulp and fragmented olive 

stones 

Simultaneous saccharification and  solid state 

fermentation  

Bioethanol [72] 
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Wheat straw Pre-treatment and Fermentation using Clostridium 

beijerinckii P260 

Acetone–

butanol–ethanol 

[73] 

Rice bran (RB) and de-oiled rice 

bran 

Pretreatment and Fermentation using Clostridium 

saccharoperbutylacetonicum N1-4. 

Acetone–

butanol–ethanol 

[74] 

Grape and sugar beet pomace Solid state fermentation using Saccharomyces cerevisiae Bioethanol [75] 

Rye bran  Fermentation using Streptomyces fulvissimus CKS7 Bioethanol [76] 

Waste animal fat High temperature treatment using methanol along with 

catalysts nickel and magnesium. 

Biodiesel [77] 

Waste fish oils and used cooking 

oils  

Direct utilization or mild heat treatment Biofuel [78] 

Palm shell Pyrolysis Biooil [79] 

Brunei rice husk  Catalytic pyrolysis using Zeolite-Socony Mobil—5 

(ZSM-5) 

Biooil [80] 

 

 

F. WASTE MINIMIZATION AND SUSTAINABLE DEVELOPMENT 

 

Sustainable industrial development, including agro- and food industries, require four-pronged 

(4-R) strategy that ensure source Reduction, waste Recovery, Recycle and eco-friendly 

detoxification or neutralization for Reuse. Green productivity can only be achieved through 

zero discharge, zero emission, zero pollution, cost-effective processing, and application of 

clean production technology. The regulatory agencies and the food-processing industries can 

work together to develop new technologies for waste management that is commercially 

viable and environment friendly [81]. In this context, it is obvious that water pollution is the 

more serious problem, as solid wastes have better chances of recovery and recycling. Water is 

used in variety of purposes such as an ingredient of food product, for washing and cleaning 

purposes, for generating steam, as a coolant, etc., which makes the types and concentration of 

pollutants widely variable.  

The suspended solids in the effluent are either floated in the form of scum or sediment at the 

bottom, and the latter increases the cost of wastewater treatment. A large reservoir of the 

treated wastewater is often maintained, as this pigmented water cannot be discharged into the 
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natural water bodies, despite maintaining Biological Oxygen Demand limits. Approaches of 

waste management and handling may vary from one country to another, with the principle 

technologies being the same in most cases. In fact, different countries have proposed different 

models for effective handling of wastes with the basic steps as follows.  

 Waste reduction: Measures like in-plant modification is a major approach, and the 

methods used in this approach depend on local conditions. 

 Waste conservation: The preliminary step for an efficient preventive measure to 

minimize generation of wastes is waste conservation. It is much effective to control at 

source i.e. not to produce waste in the first place. Effective use of resources can give 

both optimum economic benefit and environmental protection.  

 Waste segregation: Segregation or categorization of wastes, not only minimizes the 

burden of solids from wastewater but also lowers the waste load and treatment cost. 

Wastewater should be separated according to their characteristics; greasy or non–greasy, 

clear or dirty, chilled, cold or hot, surface water or sanitary wastes, etc. which should be 

collected and treated separately.  

 Waste utilization (reuse, recovery / recycling): Even if waste minimization practices 

are operational, it is inevitable that some wastes will be generated. The recovery, reuse, 

or recycling of wastes ensures utilization of raw materials for the production of other 

valuable products. [4]. 

Few of the other approaches that are undertaken in different regions and countries are 3R 

approach [5], Clean Technology [63], community based food management systems [82], 9-

stage sustainable management systems etc. [83]. However this particular sector have huge 

potential and is termed as ‘Bio-economy’ by the European Union which means spent 

wastes from one raw material can be used for other processes for generation of useful 

products [3]. Reutilization of wastes is helping us to control wastage, reduce the use of 
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natural resources, and to generate newer and smarter products. Practicing recycling also helps 

the future generations by providing them with a better and greener environment for 

sustainable development. However, there are many constraints to effective utilization of 

wastes, as listed below. 

 Sourcing of waste residue due to their seasonal and scattered nature bearing high 

transportation costs 

 Variation in the quality of wastes and their deterioration with time 

 Lack of adequate technologies or their information 

 Absence of incentives and lack of assurance from market for finished goods 

 Consumer prejudices and religious habits 

 Inadequacy of infrastructure to support this emerging sector 

 Lack of funds and manpower for Research & Development work in waste recycle 

 Insufficient managerial or administrative initiatives to develop and promote schemes 

to entrepreneurs in both Government sector and Private organizations [4] 

 

G. SOCIO ECONOMIC IMPORTANCE 

 

One of the most important needs of any growing population is energy. This growth has 

resulted in exponential rise in cost of unrefined oil, continuous deforestation, decrease in 

natural assets, political turbulence, environmental imbalances, and replacement to biomass in 

order to meet the energy demands of a growing economy like India. India faces an 

intimidating summon to fulfil energy requirements to cater to its expanding human load and 

industrialization. Thus, India must invest in renewable energy options to reduce its current 

imports, which is as much as two-third of its fuel needs. Almost the entire food grains 

production being used to feed its increasing population, India needs more affordable and 

renewable sources such as agro- and food industry wastes to produce bioalcohol / bioethanol. 
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The pre-treatment methods for bioethanol production can be further improved using faster 

enzymatic hydrolysis of the wastes. Besides, a significant amount of vegetable fibers have 

prospective use as alternatives to wood for pulp, paper and other applications [62]. 

Bioethanol production has mitigated the problem of agro- and food industry wastes, created 

jobs, increased farmers’ income, encouraged entrepreneurs, and has helped to partially meet 

the energy crisis. However, there are certain potential drawbacks e.g. greenhouse gas 

emission from repeated reuse of wasteland, lack of Government subsidies and other market 

interventions to make bioethanol competitive with fossil fuels. 

I. Market value and bio-economy 

 

About 181.5 billion tonnes of lignocelluloisic biomass is produced globally in a year, of 

which 8.2 billion tonnes are currently utilized and the rest remain untreated and degrade as 

waste. Approximately 7 billion tonnes are produced from by-product of agricultural, forest 

and grassland activities, of which 1.2 billion tonnes are merely agricultural residues. So, 

efficient utilization of these wastes are becoming a necessity to expand the prospects of 

developing bio-economy [84]. These agro-industrial waste biomass is widely available and 

forms the substrate for the production of biofuel, bioenergy and various value added 

products. Optimized technologies, life cycle analysis and economic assessment of these 

processes can contribute in the development of these nature friendly concepts. Various types 

of pre-treatment methodologies, valorisation techniques, integrated approach and 

optimization can increase the recycling value of these substances. The processes are not only 

a step towards the sustainable circular bio-economy but also an art of living life in a zero 

waste world [85]. 
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II. Commercialization and business development 

 

Although, various alternative processes are developed for bio-alcohol production from agro-

industrial wastes but their high-end costs and wide variety of substrate composition has 

limited their implementation on a commercial scale. Nevertheless, several integrated 

bioprocessing techniques is researched increasingly nowadays to produce second generation 

fuel and it has proven itself to be one of the most promising approach [61].  

Venezuela case study 

Venezuelan company, Etaven CA, which has patented production of “YARETANOL” (a 

cassava yare bioethanol). They trade to companies producing petrochemical for blending to 

generate fuel for vehicles. For its suitable positioning, the company can get cheap plant as 

well as residual plant waste (yare) associated with cassava flour production. After processing 

this waste, it obtains half yield of ethanol at half of the retail price, for benefit. By using this 

waste, ETAVEN has good influence on local population and the environment since it has 

reduced the cyanide pollution due to non-disposal in water bodies, lowered harmful gas 

evolution, created an alternative fuel source for transportation, created several jobs and 

improved the livelihood of locals. 

 

 Achievement indicator on outcome basis as of 2012 by ETAVEN: 

 Investment on source:2.5 million USD, Repairing and prolongation cost:375,000  USD 

per year,  

 Product yield: 30 Tonne /day , Period of cost return:2 years approx,  

 Rate of return: Less than 50%, Gross margin:99% 

 In spite of huge success of some of the industries, trying to reutilize agro-industrial 

wastes, most of them fails to get all ends meet. Many experts have tried to suggest 

https://www.sciencedirect.com/topics/engineering/bioethanol-production
https://www.sciencedirect.com/topics/engineering/consolidated-bioprocessing
https://www.sciencedirect.com/topics/engineering/consolidated-bioprocessing
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several business models to rectify the limitations, but it needs more research and funding 

if must be developed to a promising alternative. 

 

Potential business performance 

 

This proposed business model, as demonstrated in Figure 3, is one such example. It scores 

better in innovation for developing improved technologies or operations, and creation of 

meaningful partnerships on the block, like raw material providers, process makers, 

management groups and advisories.  

 

 

Figure 3: Doughnut chart showing an approximated and proposed business model for Bio-

alcohol production [86] 

 

However, the model fails to score high on other areas due to the need for personalized 

application of technologies by each industry.  The primary risks associated with adopting it to 

a business level are: 

 Market risks: Uncertainty in successful launching of new product from research and 

development stage to commercialization. 
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 Technological risks: Uncertainty of the operations involved in a system after industrial 

scale up.  As it is combination of manifold steps, it may involve dangerous commercial 

investments. 

 Political and regulatory risks: Challenges from unfavourable business environment, 

possible resistance from Government to obtain permits and lengthy process for obtaining 

approval for patent.  

 Safety, environmental and health risks: Risk of environmental pollution and 

generation of hazard, if bio-alcohol production from agro-waste does not remove 

pathogens and pollutants completely, and is discharged in open [86]. 

 

H. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS 

 

The component obtained by directly or indirectly through photosynthesis is called a biomass. 

They have high moisture content, low energy or bulk density and irregular shape and size. 

Due to heterogeneous nature, origin, composition and application of lignocelluloisic biomass, 

their nature of pre-treatment varies widely. Since it is difficult and/or less efficient to use 

them in their natural form, hence pre-treatment is necessary to convert them for maximum 

product recovery. There are two pathways by which any biomass can be converted into 

useable substances – biochemical and thermochemical. Pre-treatments may lead to physical, 

chemical or structural modifications to the mass that can be easily converted to useful 

products. Biochemical process involves using microorganisms or enzymes to break down the 

biomass whereas thermochemical process involves heat treatment to generate energy. 

The pre-treatment processes can be subdivided into three broad types – physical, chemical 

and biological. The classification that are involved in the conversion of lignocelluloisic 

biomass are shown in Figure 4 [87]. 
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Physical pre-treatment: 

Mechanical processes that reduce particle size, increase surface area and pore size, reduce 

crystallinity, decrease polymerization are often used as pre-treatment(s). For example, milling 

is a vital step to improve enzymatic treatment of biomass. Particle size reduction helps in 

improving mass and heat transfer processes. Besides milling, chipping, briquetting, drying, 

densification, microwaving, extrusion, ultra-sonication, palletisation, torrefaction, etc. are all 

considered as various forms of physical pre-treatments. The limitations of this method 

include inability to digest lignin, high consumption of energy and cost intensiveness [88] 

[89].  

 

Figure 4: Pre-treatment processes involved in saccharification of waste substrates  

 

Chemical pre-treatment: 

Organic or inorganic chemicals disrupts the structure of biomass to make it usable. 

Lignocellulose, however, are resistant to chemical breakdown due to their recalcitrant nature, 

which includes complexity of structure, heterogeneous nature, crystalline cellulose and 

degree of lignification. Chemical conversion of lignocellulose isolates bio-polymeric 

PRETREATMENT

PHYSICAL CHEMICAL PHYSICO CHEMICAL BIOLOGICAL
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constituents of the material helping them to breakdown into smaller molecules. Acid, alkali, 

organic solvent, deep eutectic solvent and ionic liquid are the chemicals used for pre-

treatment [88] [90-92].  

Physicochemical treatment: 

The process involves the combination of both physical and chemical treatment, in many cases 

they are found to be more effective than single methods. Steam explosion, carbon-di-oxide 

explosion, ammonia explosion, liquid hot water treatment, etc. can be considered under this 

category [93].  

Biological pre-treatment: 

It mostly involves fungal action including degradation, depolymerisation and cleavage of the 

lignocelluloisic components. Advantages includes zero toxin output, high yield of products at 

a lower energy input, and high degree of specificity [94] [95]. Biological treatments includes 

both whole cell and enzymatic pre-treatments having limitation such as higher residence 

time, need for careful control, space requirement etc. [96]. Brown rot, white rot, soft rot, 

Sacccharomyces, Actinomycetes, certain bacterial species are some of the microorganisms 

involved in this method, which effectively removes lignin and hemicellulose, while having 

less effect on cellulose [97]. 

The major bottlenecks of successful pre-treatment processes are high capital cost, 

inconsistent yield, and lack of rapid and reliable tools to accurately assess biomass 

components. Since pre-treatment methods involves complicated upstream and downstream 

processes, chemical recycling and waste treatment techniques, optimization and control 

becomes difficult in most cases [98]. 
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I. PROCESS OPTIMIZATION AND ITS IMPORTANCE 

Any process optimization involves continuous adaptation of a process in order to improve 

them while maintaining certain limitations. It may include identification of weakness, 

strengths, opportunities and threats, and finding appropriate solutions to overcome them. It is 

also required to achieve desired competitiveness with respect to an existing standard process. 

.Fermentation process condition and media composition play vital roles as they affect the 

production, concentration and overall yield of any fermentation end product. Since this is 

directly related to cost effectiveness of that process, therefore it is important to take into 

account the overall optimization of the fermentation process. Any optimization process is 

very laborious, open ended, time consuming and expensive in nature as it involves repeated 

replicates to be performed for a certain experiment. Besides, generation of new variants and 

mutants also necessitates periodical optimization of any bioprocess. Experiments with 

different combinations of factors like process conditions, process sequence, media 

components etc. must be performed to investigate best growth conditions that produces 

highest amount of product. 

During optimization of fermentation, it is important to decide that whether we should perform 

the experiments in close ended or in open ended systems. Close ended systems follow simple 

strategies, where fixed number and type of components are analysed. On the other hand open 

ended systems relies on analysis of any number and type of components for optimization, 

which is beneficial, since this system makes no assumption of the best possible parameters to 

be selected. Therefore, it is always better to start with an open ended system and then analyse 

with a closed system [99]. 

During fermentation, composition of the fermenting substrate plays a vital role, which may 

affect final product concentration and yield along with cost of downstream and recovery 
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processes. The factors that determine the media composition include type of fermentation, 

nature of strain, type of primary and secondary metabolites produced and separation process 

adapted for product recovery. Media composition can be successfully statistically optimized 

taking into account all empirical and theoretical data, and it is considered as a distinct part 

that connects upstream and downstream systems of any fermentation process [100] [101]. 

Optimization techniques relies on various methods starting from borrowing, component 

swapping, biological mimicry, one-factor-at-a-time, factorial design to Plackett and Burman 

design, central composite design, response surface methodology, evolutionary operation, 

evolutionary operation factorial design, artificial neural network, fuzzy logic, genetic 

algorithms etc. Each of these methods have their own set of advantages and limitations and 

have to be selected depending on their suitability to the type of experiments carried out [99]. 

J. CELL IMMOBILIZATION 

 

Cell immobilization can be defined as the physical confinement or localization of intact cells 

to a certain region of space; without loss of desired biological activity. Scientists have 

successfully performed microencapsulation and Nano-encapsulation of cells collectively 

called bio-encapsulation. The physical and biochemical properties of the immobilizing matrix 

and the nature of application determines the suitability of the immobilization technique for 

any specific microorganism. The following are some of the desirable characteristics of any 

cell immobilization system: 

 High capacity of cell mass loading 

 Easy access to the nutrients of 

media 

 Simple and nontoxic method 

 Have high surface to volume ratio 

 Ability to do optimum mass 

transfer 

 Can be easily sterilized and reused 
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 Cells and carriers can be easily 

separated from media 

 Good for cell suspension and 

anchorage in conventional or non-

conventional reactor systems 

 Biocompatibility with animal cell 

 Should be economical 

Immobilized cell system that meets all the criteria are found to be advantageous as compared 

to free cell during fermentation process. Generally the yield is found to be higher for the 

former along with the convenience of reusing, product purification, recovery and 

preservation. The only limitation is the biomass loss that may happen sometimes through the 

immobilization matrix into the solution decreasing the efficiency of the process.  

I. Types of cell immobilization 

Based on physical localization and type of microenvironment, immobilized cells can be 

classified as follows (Figure 5): 

These immobilization techniques utilizes different types of matrices in order to remain 

embedded with the cells [102]. 

II. Cell immobilization matrices 

 

Cell immobilization matrices are made of different materials that can range from natural, 

synthetic, inorganic etc. Natural polymers can be prepared from natural materials whereas 

synthetic and inorganic matrices are artificially generated. Synthetic polymers can be ion 

exchange resins that provides insoluble supports which can hold and trap cells in them. 

Inorganic polymers are made of inorganic materials which provides a sturdy support which 

can hold cells inside its porous structure. Table 5 enlists some of the variations in matrices of 

each type that are capable of immobilizing some specific cells. 
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Figure 5: Types of cell immobilization process 

The table below has enlisted some of the frequently used combinations; however, new and 

innovation combinations are continuously developing in the area of cell immobilization for 

performing cost effective sustainable fermentation process. 

Table 5: Microorganisms and their respective matrices for immobilization 

Natural polymers 
Name of the matrix Microorganisms used Reference 

Alginate Saccharomyces cerevisiae, Bacillus sp, Pseudomonas sp. [103, 104, 105, 106] 

Agar/ Agarose Bacillus sp, Escherichia coli, Lycinibacillus sp, Yeast. [107, 108, 109, 110] 
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Chitosan/Chitin Bacillus sp, Escherichia coli [104, 111] 

Collagen Microbacterium arborescens, Saccharomyces cerevisiae [112, 113] 

Carrageenan Zymomonas mobilis, Escherichia coli, Saccharomyces 

cerevisiae, Bacillus sp. 

[114,115, 116, 117] 

Gelatin Echerichia coli, Streptomyces roseofulus, Saccharomyces 

cerevisiae, Erwinia sp. 

[118, 119, 120] 

Cellulose Streptomyces griseobrunneus, Bacillus paramycoides, 

Lactobacillus delbruecki, Yarrowia lipolytica, Echerichia coli. 

[121, 122, 123, 124] 

Starch  Lactic Acid Bacteria and Yeast [125] 

Pectin Nocardia tartaricans, Saccharomyces cerevisiae, Candida 

guilliermondii  

[126,127] 

Synthetic polymers 

Polyvinyl Chloride Yeast, Ammonia-oxidizing bacteria.  [128, 129] 

Inorganic polymers 

Zeolite Aureobasidium pullulans, Aspergillus oryzae. [130, 131,137] 

Ceramics Phanerochaete chrysosporium, Saccharomyces cerevisiae [132] 

Diatomaceous 

Earth 

Alcaligenes denitrificans, Bacillus sphaericus  [133, 134, 135] 

Silica Glass  Escherichia coli, Staphylococcus aureus, Aspergillus oryzae.  [136] 

Activated carbon Aspergillus oryzae, Methanogenic organisms [137, 138,139] 

Charcoal Bacillus firmus, Pseudomonas, Achromobacter, 

Ochrobactrum y Stenotrophomonas, Bacillus cereus.  

[140,141,142] 

 

 

K. APPLICATION OF RESPONSE SURFACE METHODOLOGY (RSM) IN 

PROCESS OPTIMIZATION 
 

One of most useful and advanced tool of process optimization especially fermentation can be 

achieved through response surface methodology or RSM. It helps to identify the best 

operating conditions for a particular process and how the objective is affected by a set of 

conditions related to that objective. It minimizes experimental load and saves time 

considering all possible combinations to simulate the final outcome [143]. 

RSM operates on different types of models and expertise is needed in order to choose the 

model suitable for any optimization.  The central composite design (CCD) is one such model 

which is advantageous as it is very accurate and eliminates the necessity of three level 

factorial experiment for getting a quadratic model. It is also known as “Box-Wilson Central 

Composite Design”. In this model, the centre points are augmented with group of points that 
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allows estimation of equation. The centre points are aligned with ±1 and ± α values with 

 1where the value of α depends on specific properties of the concerned design. CCD < ׀α׀

contains various factors on which more than two or many star points i.e. higher and lower 

extremities are applicable. The CCD model can be extended on a two level factor which 

makes them very suitable for response surface modelling and optimization [144]. 
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Chapter title: Selection of wastes for fermentation 

 

1.1. INTRODUCTION 

Constant disposal of food and agricultural wastes on a daily basis is hazardous to the 

environment, and contributes to increased carbon footprint of the world. Food and 

Agricultural Organisation (FAO) pointed out that this practice may also severely affect 

climate change [1]. Local vendors and large supermarkets are some of the chief contributors 

to this waste problem [2, 3]. Food waste can categorically affect different elements of 

ecosystem to create global nuisance and food shortage. [4, 5].  

Bagasse is one of the lignocellulosic biomasses generated after sugarcane juice expression, 

which has been used for the production of bio-alcohol either by direct inoculation [6, 7, 8] or 

by using immobilized cells to improve yield [9]. Some studies reported genetically 

engineered xylose fermenting strain used to ferment sugarcane bagasse hydrolysate that may 

contain some inhibitory substances from food waste [10].Beside Saccharomyces, some novel 

strains having capacity to ferment pentose were also used for bagasse waste utilization [11]. 

Spent tea is one of the popular solid phase medium for cell mass growth, when enzymatic or 

acidic saccharification process were adopted at optimized conditions[12,13] for different 

sources of tea. Spent worm tea shows good potential as a pre-treatment process for second 

generation bioethanol production [14]. Fungal biomass can be grown on spent tea to be used 

as inoculum for fermentation process [15]. 

Hydrolyzed potato wash water contains more sugar than raw potato wash water. The 

hydrolysis and saccharification can be done both by acidic treatment [16, 17] and by 

enzymatic reactions of the potato starch [18]. Overnight soaked water [18], potato mash [19], 

rotten soft potato [20], potato tubers [21] or potato peels [22] are some of the substrates from 
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potato which may generate acetone, butanol and majorly ethanol. Integrated membrane 

extraction of the fermented substrate helps in extraction of different components from potato 

waste [23]. 

In the current chapter, three wastes; potato wash water, spent tea and bagasse were selected 

based on their availability, cost, bulk production, ease of processing and handling. Extract of 

these wastes were preferred than solid state fermentation, since the latter may involve much 

elaborate processes that will increase the cost due to involvement of more number of unit 

operations.  

 

1.2. MATERIAL AND METHODS  

 

1.2.1. Treatment of potato wash water 

The potato wash water was collected from the local potato chips factory where they have 

soaked potato slices in water for approximately 15 minutes as shown in (Figure 1.1 a).The 

resulting wash water was subjected to hydrolysis using–i) 5% (v/v) of concentrated 

hydrochloric acid under condition of 95° - 100°C for 60 minutes [17] and ii) 1% (v/v) of 

concentrated hydrochloric acid under condition of 121°C for 15 minutes at 15 psi 

respectively. 

 

1.2.2. Water extraction of spent tea  

 

The spent tea leaves were collected from local tea sellers and air dried for a while. 10 g spent 

tea sample was mixed with 150 ml water to boil for 2 to 5 minutes. Five different extracts 
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were prepared following the same procedure every time reusing the spent tea from the 

previous extract (Figure 1.1b).  

  a b   

Figure 1.1. (a) Potato pieces soaked in water to get potato wash water and (b) Spent tea extract kept after 

extracting 5 times simultaneously (1st to 5th extraction)  

 

1.2.3. Water extraction of bagasse  

 

Bagasse was collected from local sugarcane juice sellers and was cut into small pieces 

(Figure 1.2a) of 1 inch in length approximately (Figure 1.2b). Every 5 g batch of bagasse 200 

ml water was added to get the extract under boiling condition (Figure1.2c). The water extract 

was collected for three different time periods 5 minutes, 30 minutes and 60 minutes to check 

the extent of extraction of sugar. 

 

    a   b   c  

Figure 1.2. (a) Collected bagasse pieces from local vendor, (b) Bagasse cut pieces each of approximately 1 inch 

length (c) Extraction of bagasse pieces in water at 90-100 °C 

 



80 | P a g e  
 

1.2.4. Estimation of reducing sugar  

 

After treatment and neutralization, all the samples were analysed for reducing sugar content 

by using dinitrosalicylic acid method with respect to a standard glucose solution using an 

UV-Vis spectrophotometer (Shimadzu, Japan) at 540 nm wavelength [17, 24, 25]. 

 

1.2.5. Inoculum preparation and fermentation of substrate  

 

The reducing sugar content helped to determine the conditions, under which the waste 

substrates can be utilized to produce ethanol. 50 ml of each of the three of waste sample was 

taken, and seeded with 5 % (v/v) of Saccharomyces cerevisiae MTCC 180 [26] culture 

(Figure 1.3a). The inoculum preparation includes culturing the strain in Yeast Extract-

Peptone-Dextrose (YEPD) broth media [27] for 48 hours. Fermentation was carried out 

(Figure 1.3b) in an acidic pH of 3-4 at 30-32°C, and the ethanol content readings were taken 

at every 24 hours for up to 72 hours. 

 

1.2.6. Estimation of ethanol content 

 

The ethanol content was estimated by using dichromate titration method. The sample to be 

tested was placed in a small beaker above 10 ml acidified dichromate solution at 30 °C 

overnight. Water and ethanol slowly evaporates and comes in contact with dichromate where 

it gets dissolved. With time all the ethanol evaporates and react with the excess dichromate 

and become oxidized to form ethanoic acid. The amount of unreacted dichromate in the 

solution was estimated by adding potassium iodide solution and titrating with a standard 

solution of sodium thiosulfate. The colour turns light yellow when starch solution is added 
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and then on continuation of titration the blue black colour turns colourless marking the end 

point [28, 29, 30]. Readings were taken every 24, 48 and 72 h during fermentation (Figure 

1.3c) to estimate the amount of alcohol generated in the process. 

a  b  c  

Figure 1.3. (a) Picture showing Saccharomyces cerevisiae MTCC 180 strain preserved in streaked condition in 

a YEPD slant in the Department of Food Technology, Haldia Institute of Technology, (b) Picture showing batch 

fermentation of different selected wastes using yeast under anaerobic condition (c) Picture showing overnight 

hanging and incubation of fermented sample for ethanol estimation using dichromate method. 

 

1.2.7. Statistical Analysis 

Three replicates of experiments were performed for all the values. Statistical values of 

standard deviation for each finding were analysed using one way ANOVA (MS excel 2013), 

and the results were analysed using least significant differences (P  0.05). 

 

1.3 RESULT AND DISCUSSION 

 

1.3.1. Selection based on reducing sugar content of the samples 

 

The reducing sugar estimation of the wastes i.e., potato wash water, spent tea and bagasse are 

shown in (Table 1.1) and elaborated in Figure 1.4. 
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Table 1.1 Reducing sugar content of three different treated and raw wastes 

 

Name of the waste Sample name Reducing sugar (G/litre) 

Potato wash water 

Untreated Potato wash water 0.13± 0.003a 

Autoclaved Potato wash water  0.495± 0.01b 

Hydrolysed Potato wash water 0.705± 0.03b 

Spent tea 

1st extraction 0.053± 0.02a 

2nd extraction 0.012± 0.007b 

3rd extraction 0.0087± 0.00b 

4th extraction 0.0087± 0.007b 

5th extraction 0.0048± 0.001b 

Bagasse 

5 min Extract 0.524± 0.07a 

30 min Extract 0.764± 0.05b 

60 min Extract 0.679± 0.09a 

 

Values in the table are Mean ± S.D of three replicates; superscript letters adjacent to each value indicate 

significant difference (p<0.05) 

 

Figure 1.4. Graph showing reducing sugar content of the selected wastes measured using dinitrosalicylic acid 

method 
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The reducing sugar contents in three different waste samples, as estimated by DNS method, 

were significantly different with the bagasse water extract showing higher value of 0.764± 

0.005 g/litre at 30 min extraction. The potato wash water sample yielded lower 

concentrations of reducing sugar, which improved upon heat treatment and hydrolysis. The 

higher mean value of 0.705± 0.03 g/litre of reducing sugar from hydrolysed potato wash 

water was comparable with results obtained from bagasse extract. The spent tea sample 

showed higher value with the first extraction at 0.053± 0.02 g/litre, and decreased sharply 

subsequently up to fifth extraction. The best substrate combinations in all the three wastes 

were selected for further experiments. 

This study reveals that hydrochloric acid hydrolysis of potato starch gives higher glucose 

yield than any other method applied to treat potato wash water, and this was consistent with 

the results reported by another study [31]. Spent tea aqueous extracts were also used for 

ethanol production and found to be more effective producing 21% (v/v) of alcohol at 

temperature of 80C and pH 8 [32]. However, sugarcane bagasse aqueous extracts showed in 

bioethanol generation in the world and extensively used as a substrate in various forms [33]. 

 

1.3.2. Selection based on ethanol content of the samples 

The 30 min bagasse water extract, the hydrolysed potato wash water and the first extraction 

of spent tea were fermented using Saccharomyces cerevisiae MTCC 180, and the ethanol 

contents are tabulated below (Table 1.2). 

 

Table 1.2 Ethanol contents of three different selected wastes 

Name of the waste 
Ethanol content (g/ 100ml) 

24 h 48 h 72 h 

30 min bagasse water extract 0.126±0.00a 0.202±0.03a  0.094±0.00a  

Hydrolysed potato wash water 0.054±0.00c 0.145±0.00c 0.017±0.01b 

First extraction of spent tea 0.0207±0.00b  0.073±0.00b 0.047±0.00c 



84 | P a g e  
 

Values in the table are mean ± SD of three determinations, superscript letters in a column differ significantly 

(p<0.05) 

 

The ethanol estimation gives higher values with bagasse extract followed by hydrolysed 

potato wash water and spent tea. The 24 h ethanol yield for bagasse extract started with 

moderate value of 0.126 g/100 ml,  which then showed higher ethanol yield of 0.202±0.03 g/ 

100ml at 48 h which gradually decrease at 72 hr. The ethanol yield pattern for hydrolysed 

potato wash water was more or less same as bagasse extract only with lower ethanol yields. 

The first extraction of spent tea showed relatively flat curve with lower values of ethanol at 

all times during fermentation (Figure 1.4).  

 

 

Figure 1.5. Graph showing variations in ethanol content of fermented bagasse extract, spent tea extract and 

potato wash water sample with change in fermentation time 

 

Therefore, based on both the reducing sugar content and ethanol production, the 30 min 
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Scientific investigation reported water extraction of alkaline bagasse pulp at 160 °C for 30 

min to get a low viscosity liquor having lower amount of bleaching residues present [34].  

Hot water pre-treatment of bagasse was reported as environmentally beneficial as there is 

reduced deterioration of polysaccharides, and consequently lower inhibitor generation [35]. 

Inhibitors like furfural generation is also lowered at reduced temperature and absence of 

acidic environment [36], which is advantageous in case of bioethanol production. 

 

1.4. CONCLUSION 

 

Wastes generated on a daily basis in different food industries due to processing of food 

creates the problem of waste generation and accumulation in the environment. These wastes 

can be reutilized to form various important compounds like ethanol, which may help to deal 

with the worsening fossil fuel crisis as well. In this study, three different waste substrates 

were selected, and acid and water extracts were prepared from these wastes. Reducing sugar 

content and ethanol estimation of the aqueous extracts revealed that 30 min extraction of 

sugarcane bagasse resulted in the best substrate for ethanol production through S. cerevisiae 

MTCC 180. However, further optimization of the fermentation conditions and nutritional 

supplementation of the chosen substrate are needed to increase ethanol yield. 
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Chapter title: Treatment of wastes to make them suitable as substrate for 

ethanol fermentation 

 

2.1 INTRODUCTION 

Municipal solid waste contains about 50%–60% organic wastes including food waste, 

sometimes referred to as organic fraction of municipal solid waste. Food waste consists of 

both cooked and uncooked wastes generated from different public places like community 

kitchens, hotels, households, festivals, canteens as well as food processing industries, and 

from even from each home kitchen. Treatment or disposal of these wastes may sometimes 

lead to production of uncontrolled amount of greenhouse gases from the landfill. The 

diversification of waste in the landfill can be regulated if it is treated at source using 

techniques like anaerobic digestion, UV treatment, fermentation, composting, etc. Though 

these biological processes are gaining potential in terms of waste treatment, abundant 

availability of water needed to perform successful waste treatment operation remains a major 

challenge. Food wastes having low solid do not require any pre-treatment but if the solid 

content is more than 15 %, pre-treatment methods can be used [1]. 

Local sugarcane juice vendors and sugar refineries produces huge amount of bagasse wastes 

that forms 30 – 40 % of the total waste generated globally. Bagasse is the fibrous solid left 

after juice extraction from sugarcane that is used as raw material for sugar production. One 

tonne of sugarcane processing operation produces about 280 kg of bagasse, and tonnes of this 

wastes are regularly processed worldwide to reduce or convert it into useful products. 

Compared to other agro industrial wastes, low ash content of bagasse (about 1.9 % by wt.) 

makes it suitable for valorisation into various value added products, which is an effective 

solution to the problem associated with environmental accumulation of this waste. Bagasse 
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primarily contains cellulose (48.3%), hemicellulose (28.6%) and lignin (23.5%) along with 

some other ingredients in lesser quantities [2]. 

Pre-treatment methods can be broadly classified as physical, chemical and biological. 

Treatments such as acid or alkali treatment, drying, organic solvent treatment, steam 

explosion, hot water treatment or fermentation using fungal biomass have been used for 

efficient utilization of this waste. [3]. Many studies reported the use of aqueous extract of 

bagasse, pre-treated or without any treatment, in order to produce industrially valuable 

products [4, 5, 6].Dry bagasse contains 1.86 % of reducing sugar, which, if extracted in 

solution, can be fermented into ethanol using microbes such as yeasts as fermenting starter 

[7]. Thus, bioethanol is one of the major industrial products that can be generated from 

bagasse [8] along with other applications like energy production through combustion, 

production of biochar, activated carbon generation, in gasification, pulping to name a few. In 

the current study, aqueous extracts of wet and dry bagasse were utilized as potential 

substrates for ethanol production by yeast fermentation. 

 

2.2. MATERIAL AND METHODS 

 

2.2.1. Fourier Transform Infra-red (FTIR) spectroscopy of aqueous extract of bagasse  

The aqueous extract of bagasse was investigated using mid FTIR range spectroscopy 

(Thermo-Fisher Scientific, Nicolet 6700) for analysis of the substrate before it was 

supplemented with the nutrients. Within the mid infrared range, observations were taken 

between the wave numbers 400 cm-1 and 4000 cm-1. The results were obtained as absorbance 

vs. wave number, and the peaks were analysed using the Origin Pro®, Version 2022 b 

software, Massachusetts. 
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2.2.2. Drying of wet bagasse 

 

Wet bagasse was collected from sugarcane juice seller containing approximately 40-50% 

moisture, cut into 1 inch pieces, weighed, and put into drying. To dry the bagasse, the tray 

drier (IIC-INSTIND, Kolkata) was preheated and brought to a temperature of 70°C. The 

bagasse were put into the tray for drying [9]. The moisture content in bagasse samples 

measured using the following equation. 

 

Moisture % =
(Initial weight of Bagasse −  Final weight of Bagasse after drying) ∗ 100

Initial weight of Bagasse
 

 

2.2.3. Preparation of water extract of wet and dry bagasse  

 

The water extract of both wet and dry bagasse were prepared by taking 5 g wet or dry bagasse 

mixed with 200 ml water, and boiled at 95°-100°C for 30 min. Then the extract was subjected 

cooled to room temperature, the suspended solids and fibres were separated using a double 

layered muslin cloth, and the filtrate was used as the substrate for fermentation [10]. 

 

2.2.4. Determination of quality parameters of wet and dry bagasse extract 

 

The pH of the wet and dry bagasse extracts were measured by digital pH meter (Systronics μ 

pH system 361, India) and pH paper simultaneously. The total soluble solid in the aqueous 

extracts were determined by a hand-held Refractometer (ERMA RBH 62, New Delhi, India). 

Reducing sugar content was estimated by dinitrosalicylic acid (DNS) method using an UV-

Vis spectrophotometer (Shimadzu-UV 1800, United States) using at 540 nm wavelength [11]. 
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The Dextrose and the dinitrosalicylic acid were sourced from SRL chemicals and Himedia 

laboratories Pvt. Ltd. Respectively. 

 

2.2.5. Inoculum preparation and substrate fermentation 

 

50 ml of wet and dry bagasse extracts were autoclaved after pH adjustment, cooled and 

seeded with 5 % (v/v) of Saccharomyces cerevisiae MTCC 180 culture [12]. The inoculum 

preparation was carried out in YEPD broth for 48 hours [13].Fermentation was carried out in 

an acidic pH of 3-4 at 30-32°C, and ethanol contents were measured at 24 h intervals. The 

hydrochloric acid and the sodium hydroxide, yeast extract, peptone and dextrose were 

sourced from Qualigens fine chemicals Pvt. Ltd. and SRL chemicals respectively.  

 

2.2.6. Estimation of ethanol  

The process has been described in details in chapter 1 section 1.2.6. of materials and method. 

 

2.3. RESULT AND DISCUSSIONS 

2.3.1. Analysis of FTIR peaks 

 

Figure 2.1 Figure showing FTIR spectra of aqueous extract of bagasse 
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The FTIR plot (Figure 2.1.) clearly shows presence of majority of carbohydrate molecules 

along with some other contaminants and impurities. The carbohydrates contains both alcohol 

and ether linkages in their structure. The alcohols can be primary or secondary alcohols 

depending on the molecule. So, they have distinct C-O and O-H stretching regions with some 

wagging as well.  More hydroxyl groups are indicative of extensive hydrogen bonding, 

whereas the strong broad O-H stretch in the plot is indicative of the same hydrogen bonding 

in carbohydrates. The presence of a small peak at 3632 and a strong peak at 3433 are 

indicative of the presence of very small amount of free alcohol and some substantial amounts 

of intermolecular bonded alcohol. The region shows striking similarity with IR spectrum of 

sucrose as described by Smith (2017), who worked with glucose and sucrose solutions 

individually [14]. This indicates presence of some amounts of sucrose in the bagasse extract, 

which have remained in the waste, and were transferred into the extract. The wavenumber 

1021 cm-1 shows association with multiple sugar rings connected by ether linkages present in 

many carbohydrates. It is also indicative of presence of cellulose molecule that gives peak at 

1029 cm-1. The small peaks at 1411 may indicate presence of xylan, a major hemicellulose 

component,  which usually gives peak at 1419, while the blob at 1261 may indicate presence 

of lignin, which usually gives peak at 1266 cm-1[15]. The peak at 1629 indicates absorbed 

water in carbohydrate molecules. It gives a small peak, which indicates atmospheric water 

absorption by several O-H groups due to their polar and hygroscopic nature. The lone 

saturated hydrogen molecules present will give a C-H stretch at around 2900. In this sample, 

due to mixture of carbohydrates and lesser number of lone hydrogen, the peak is 

comparatively less intense, low in height, and the peak value is 2925 [14, 16]. The peak at the 

2358 wavenumber indicates presence of O = C = O bond, which usually gives peak at 2350 

[17]. The peak at 633 is indicative of the presence of hydrocarbon structures. C-H bending 

vibrations of terminal alkynes can be found in the range of 610-700 in the form of a strong 
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peak that is similar to the results reported by another study [18].Beside these peaks, some 

insignificant peaks in the diagram may indicate presence of impurities in the extract.  

2.3.2. Drying values for wet bagasse 

The tray drying to get dry bagasse was carried out for 150 min, at 70 ºC which are shown in 

Figure 2.2. 

 

Figure 2.2. Drying parameters of wet bagasse sample in tray drying operation with increase in drying time 

 

The tray drying is not a very common practice when it comes to drying of bagasse, and 

traditionally, solar drying or oven drying is commonly used. In this study, 50 g of the 

collected bagasse sample was dried at 70°C for 90 min in a tray drier. 

Hot air oven drying and open air drying are the two most traditional methods of drying 

bagasse. Both these methods are very time consuming and laborious. Microwave oven 

heating of bagasse was carried out for drying bagasse to be used as fuel and the process took 

20-25 minutes [19] as compared to other methods like solar drying, burning other fuel for 

drying, counter-current drying, rotary drum drying etc. [20]. Kinetic study of fixed bed tray 

drying of Caja bagasse was carried out, and the results revealed that drying temperature of 

75°C, with dryer inlet air velocity of 6.0 m.s-1 and cake thickness of 0.8 cm resulted in the 
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most efficient drying [21]. However, nowadays industrial scale bagasse drying is done using 

rotary drum dryer or pneumatic dryers. 

 

2.3.3. Quality parameters comparative study 

 

The pH, total soluble solids and reducing sugar content in wet and dry bagasse are enlisted in 

Table 2.1.  

 

Table 2.1. Quality parameters of wet and dry bagasse 

Sample pH Total Soluble 

solid (°B) 

Reducing sugar content 

(mg/ml) 

30 minute water extract of wet bagasse at 

95-100 ° C 

6.6 0.9 0.764 ± 0.05 

30 minute water extract of dried bagasse at 

95-100 °C 

6.51 1 0.778 ± 0.06 

 

The comparative quality analysis of wet and dry bagasse reveals that they have similar pH, 

total soluble solid and reducing sugar contents. The pH values for both samples have shown 

almost neutral values of approximately 6.5 compared to 3-4 pH of pre-hydrolysed bagasse, as 

reported in the literature [7]. Yeast strains need lower values of pH for fermenting bagasse to 

produce ethanol. One study reported a fermentation pH of 5.5 at 32°C utilizing bagasse as the 

substrate [22]. Another confirmed production of bioethanol at pH 4.5 and 35C temperature 

by saccharomyces yeast [23].Though some strains like Pichia stipites can produce 

compounds like xylose at 30 °C and pH 6.0 which saccharomyces is unable to produce at that 

pH [24].This means that an optimization of pH of the bagasse extract is needed to achieve 

optimum ethanol yield by S. cerevisiae fermentation. The soluble solid content range of 
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hydrolysed bagasse is 12-23% [25] compared to a lower value range of 0.9-1%, which was 

quite obvious, as the latter was not hydrolysed. Saccharomyces yeast fermenting tchapalo 

showed a decrease of TSS value from 13.5 to approximately 11 [26]. The requirement of 

higher range of TSS value showed that the media must be supplemented with nutrient(s) in 

order to get optimum ethanol yield. The reducing sugar content decreased significantly in the 

aqueous extracts, as compared to normal, untreated or pre-hydrolysed bagasse [7].Normally 

yeast has a maximum sugar tolerance of about 40%; some may even be able to tolerate up to 

65% sugar [8]. 

2.3.4. Alcohol content after fermentation 

 

After fermentation of both wet and dry bagasse extracts by S. cerevisiae MTCC 180, the 

ethanol contents are tabulated in Table 2.2. 

 

Table 2.2. Alcohol content of fermented aqueous extract of wet and dry bagasse 

Sample Alcohol content (g/100ml) 

30 minute water extract of wet bagasse at 95-100 °C 0.126± 0.009 

30 minute water extract of dried bagasse at 95-100 °C 0.151 ± 0.023 

 

The alcohol content in case of dry bagasse extract was slightly higher as compared to that in 

case of wet bagasse extract, but the difference was not significant. This signifies that two 

pronged fermentation strategy may be adopted. Firstly, nutritional supplementation to 

improve the nutritional content of the fermentation substrate or selecting an yeast strain that 

is capable of giving good ethanol yield even at lower concentrations of reducing sugar. So, in 

this study, a secondary fermenting strain of yeast i.e., S. cerevisiae MTCC 180 was selected 
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which was used as an inoculum in kinnow wine preparation and it has high alcohol tolerance 

as reported in a previous study [27]. 

 

2.4. CONCLUSION 

 

Agro-industrial wastes like sugarcane bagasse can become an environmental nuisance if it is 

openly dumped and/or if it ends up in landfill. This waste can typically be used to create a 

wide range of industrially important products. Bioethanol can be obtained from this waste 

after simple pre-treatment or nutritional supplementation, followed by fermentation using 

different yeast strains. Such pre-treatment processes can enhance the available amount of 

fermentable sugar to be utilized by the fermenting yeast. This study reveals that the 

composition of aqueous extract chiefly consists of disaccharides along with some absorbed 

water and various other impurities. Drying has no significant effect on primary quality 

parameters of bagasse, but it may lead to slightly higher ethanol yield, but the yield was not 

very significantly different from wet bagasse ethanol yield. Therefore we will not include this 

operation for the further studies on this substrate for fermentation. 
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Chapter title: Optimization of the ethanol fermentation conditions utilizing 

bagasse extract 

 

3.1. INTRODUCTION 

 

All over the world, people are alarmed by the impact of industrialization and fossil-fuel 

derived energy consumption on environment. Moreover, conventional fuels, including fossil 

fuels, are becoming more expensive due to their increasing scarcity [1]. These global 

concerns have fuelled research in the areas of non-conventional and renewable energy 

sources. Solid wastes, including food processing / handling wastes are also major 

environmental concerns in many countries. In this context, renewable, alternative resources 

such as bio-alcohol, biogas, bio-oils or solid wastes (including food processing / handling 

wastes) have been gaining popularity and research interests in recent years [2,3,4,5].Biofuels 

can be produced from discarded agricultural biomass such as post-harvest residues, sugarcane 

processing waste, or wastewater from food processing industries. The cost effectiveness of 

the raw materials helps them remain economically feasible in competition with fossil fuels. 

The added advantage is the environment friendly nature and renewable resources having 

significant contribution towards reduction of greenhouse gas (GHG) emission [6].About 150 

billion tons of lignocellulosic materials are used annually as renewable natural resources for 

fuel generation worldwide [7].Crop residues like carrot or onion peel [8],straw [9],fruit 

wastes like date palm [10],olive pulp [11],or food processing wastes like molasses 

[12],corncobs [13], apple pomace [14], etc. can be used as substrate(s) for Saccharomyces 

cerevisiae fermentation. They can be used to generate industrially important and 

commercially valuable second generation (2G) bioethanol through fermentation. 
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Bagasse is a common agro-industrial waste, which is generated not only by the sugar 

processing industries, but also by local sugarcane juice vendors.  About 30-34 tonnes of 

bagasse is generated after processing 100 tonnes of sugarcane in a factory [15, 16].Small 

scale industries and local vendors usually dispose these wastes with hardly any treatment, and 

often in locations, where they may cause harmful impacts on environment e.g. growth and 

proliferation of pathogenic microorganisms in untreated wastes. S. cerevisiae MTCC 180 is a 

secondary fermentation strain, and can perform better to give good ethanol yield even with a 

substrate containing low total soluble solids. Many scientific investigations have reported on 

the efficiency of the strain in alcohol generation [17, 18]. This chapter standardized different 

fermentation conditions for S. cerevisiae MTCC 180 fermentation of aqueous extract of 

bagasse, and statistically optimized some parameters using central composite design model of 

response surface methodology. 

 

3.2. MATERIALS AND METHODS 

 

3.2.1. Preparation of inoculum 

The yeast strain Saccharomyces cerevisiae MTCC 180 was procured from the MTCC, 

preserved at  Department of Food Technology, Haldia Institute of Technology, West Bengal, 

in Yeast Extract Peptone Dextrose (YEPD) media (3 g yeast extract, 10 g peptone, 20 g 

dextrose, and 15 g agar mixed with 1000 ml distilled water; pH 6.5 ± 0.2) under refrigerated 

condition (4C). The strain was sub-cultured in YEPD broth for preparation of fermentation 

inoculum [19]. All chemicals used were sourced from SRL chemicals. 

 

3.2.2. Preparation of aqueous extract of bagasse   

The process has been described in details in chapter 2 section 2.2.2. of materials and method. 
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3.2.3. Optimization of fermentation conditions 

 

Five different parameters were chosen initially using one variable at a time (OVAT), in order 

to optimize bioethanol yield based on pre-experiments and literature survey. The effect of pH 

of the substrate was studied by varying the pH from 3 to 7 using 0.1 (N) sodium hydroxide 

and/or 0.1 (N) hydrochloric acid. Each time, the pH was measured by using pH paper and by 

digital pH meter (Systronics μ pH system 361, India) simultaneously. The temperature of 

fermentation was varied from 25° to 40°C, while the duration of fermentation was varied 

from 24 to 72 h to study the ethanol yield. . The process of fermentation was carried out using 

different stages of S. cerevisiae MTCC 180 culture growth, starting from 24 h to 168 h 

culture, and the inoculum size was varied from 5 to 10% (v/v) for optimization of ethanol 

yield. The fermentation processes were carried out in 100 ml conical flasks, where the 

bagasse extract (50 ml) was adjusted to the fermentation conditions, and the final substrate 

was autoclaved. After cooling to ambient temperature, the sterilized substrate was inoculated 

with measured volume of freshly sub-cultured S. cerevisiae MTCC 180 culture. The set up 

was kept under incubation at the required temperature for a specific period of time, as 

detailed earlier.    

 

3.2.4. Experimental design and statistical data analysis 

 

Three replicates of each of the experiments were performed in OVAT, and the averages and 

the standard deviations were analysed using one way ANOVA (MS Excel 2013) at 

significance level of P 0.05. The Coefficient of variation (CoV), tcritical values at α value of 

0.05 were also obtained. Fisher’s Post Hoc test of least significant difference (LSD) values 
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were calculated to check the significance of the obtained value in accordance with the given 

formula in equation 1. 

(1) 𝐿𝑆𝐷 = 𝑡𝑐𝑟𝑖𝑡√𝑀𝑆𝑊 (1
𝑁1

⁄ + 1
𝑁2

⁄ )                                                                                                        

Where, MSW is the mean square value within groups, N1 and N2 are the respective sample 

sizes. Since three replicates for each of the values were obtained, so in this case, N1= N2= 3 

[20]. 

The effect of temperature and time were again optimized using RSM. The CCD was utilized 

for interpreting values that matches with polynomial model of second order having two 

independent factors time and temperature and one dependent factor ethanol yield. The data 

was taken in five level having five centre points. The fitness of the model was expressed by 

the values of coefficient of determination (R2). The three dimensional response surface plots 

give the relationship between the responses and the factors to maximize ethanol production. 

The amalgamation of these reformed variables that produced better yield of ethanol was 

examined for model validation.  The absolute residual error was found out from the given 

formula in equation 2 [21]. 

(2) 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 (%) =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100 

 

Design-Expert Version 7.0.0, was used for analysis for statistical validation 2021, Stat-Ease 

(Minneapolis, USA). 

 

3.2.5. Ethanol Estimation 

The process has been described in details in chapter 1 section 1.2.6. of materials and method. 

The ethanol production rate was calculated by the following equation 3 [22]. 
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(3)  𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑔 𝐿/ℎ)⁄ =
𝐹𝑖𝑛𝑎𝑙 𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔 𝐿)⁄

𝐹𝑒𝑟𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (ℎ)
                                           

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1. Fermentation condition optimization using OVAT 

 

The optimization study of fermentation carried out under submerged conditions using S. 

cerevisiae MTCC 180 in bagasse extract resulted in the following ethanol contents, as shown 

in Table 3.1. and elaborated in Figure 3.1. 

 

Table 3.1: Statistical values for optimization of fermentation conditions using OVAT 

 

pH  

Values Ethanol content (g/100ml) CoV t0.05 LSD0.05 

3 0.1759±0.0034a 0.0196 

2.2281 0.009 

4 0.3208± 0.0034b 0.0107 

5 0.2184±0.002c 0.0092 

6 0.3047±0.05d 0.0173 

7 0.1299±0.08e 0.067 

Temperature (° C) 

25 0.1847±0.005a 0.0282 

2.306 0.007 

30 0.3162±0.002b 0.0063 

35 0.2483±0.003c 0.0138 

40 0.2633±0.005d 0.02 

Time ( h) 

24 0.3162±0.002a 0.0063 

2.4469 0.01 48 0.2437±0.007b 0.0294 

72 0.2092±0.05c 0.0252 
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Inoculum age (h) 

24 0.1678± 0.001a 0.0116 

2.1447 0.007 

48 0.3185±0.001b 0.0061 

72 0.2093±0.003c 0.019 

96 0.1977±0.002d 0.0102 

120 0.0908±0.005e 0.0582 

144 0.0517±0.003f 0.0666 

168 0.0287±0.008g 0.3012 

Inoculum size (%) 

5 0.3151±0.003a 0.0126 

2.1788 0.007 

6 0.3265±0.001b 0.006 

7 0.1345±0.003c 0.0256 

8 0.1437±0.003d 0.2777 

9 0.169±0.006e 0.0408 

10 0.115±0.003f 0.0346 

 

Fermentation reaction is sensitive to pH changes, and yeasts generally prefer acidic pH for 

their growth. The highest ethanol yield of about 0.3208±0.0034 g/100 ml was achieved at pH 

4. Similar results were reported when Aspergillus spp. S4B2F strain was used on 

enzymatically hydrolysed sugarcane bagasse [23]. The effect of temperature on yeast activity 

has been well established by published reports [24]. In distiller’s malt wort, it was reported 

that maximum yeast production occurred at 30°C in non-aerated culture, while it was highest 

at 35°C in aerated culture.  
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d     

e     

Figure 3.1. Graphical representation of optimization of fermentation conditions- a) pH, b) temperature, c) time, 

d) inoculum size and e) inoculum age, using OVAT 

 

In this study, the optimum ethanol yield of 0.3162±0.002 g/100 ml was achieved at 30°C, 

while the yield decreased at lower and higher temperatures of incubation. Similar result was 

also reported by another study [25] about optimum ethanol yield at 30°C fermentation. The S. 

cerevisiae MTCC 180 culture showed a gradual decrease in the ethanol content as 

fermentation time progressed beyond 24 h (0.3162±0.002 g/100 ml). This decrease in ethanol 

production can be attributed to not only the organism reaching equilibrium growth at around 
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24 h, but also due to some loss of ethanol due to evaporation and/or due to rapid metabolism 

by the yeast. Optimum ethanol production may be achieved by much shorter incubation 

period, if bagasse hydrolysate is used as fermentation substrate, instead of intact bagasse or 

aqueous extract of bagasse [25]. A wide variation in ethanol production was achieved using 

different size of inoculum, further increase of which resulted in faster depletion of nutrients 

leading to decline in ethanol yield. An ethanol yield of 0.3265±0.001g/100 ml was obtained 

at 6% inoculum size that was found to be significantly higher compared to those obtained 

using other inoculum sizes. Numerous similar studies, reported optimum ethanol yield at 5% 

(v/v) S. cerevisiae inoculum size in fodder beet [26], bagasse hydrolysate [25], and paper 

sludge [27].Maximum ethanol yield of 0.3185±0.001 g/100 ml was obtained using a 48 h old 

culture for fermentation. After 48 h, most cells in the yeast culture were mature and active, 

and if inoculated at this level of maturity, it produces primary metabolite like ethanol at their 

rapid growth phase. However, further ageing of yeast cells may lead them into their death 

phase, rendering the culture incapable of producing optimum ethanol yield. Some reported 

optimum ethanol production by 36 h old S. cerevisiae culture fermenting rice wine cake[28], 

while a 48 h old Aspergillus niger culture was reported to produce optimum ethanol yield 

from palm fruit fermentation [29]. 

 

3.3.2. Optimization of Ethanol production using Response Surface Methodology 

 

The two most influential factors viz., time and temperature were further optimized through 

response surface methodology. The actual and coded values for the design of the experiment 

are enlisted in Table 3.2.  
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Table 3.2: The actual and coded values for the experiment using yeast for fermenting 

aqueous extract of bagasse 

Factor Name with Unit Low Actual High Actual Low 

coded 

High 

coded 

Mean Std. 

dev 

A Time (h) 21.17 26.83 -1.000 1.000 24.00 2.219 

B Temperature (°C) 28.59 31.41 -1.000 1.000 30.00 1.109 

 

The final equation in terms of actual factors is given as follows- 

Ethanol Content = -39.59845 +0.55004* Time +2.23188 * Temp -8.31250E-003*Time * 

Temp -6.61562E-003* Time2 -0.033837 * Temp2 

The experimental design, shown in Table 3.3., gives the possible combinations of process 

parameters to maximize ethanol yield.  

Table 3.3: Experimental design and responses of time-temperature optimization using central 

composite design 

Run Time 

(hours) 

Temperature (° C) Observed 

Response  

Predicted Response 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

    21.17 

 24.00 

 24.00 

 26.83 

 28.00 

 24.00 

 24.00 

 21.17 

 20.00 

 24.00 

    28.59 

 30.00 

 30.00 

 31.41 

 30.00 

 32.00 

 28.00 

 31.41 

 30.00 

 30.00 

0.22 

0.27 

0.33 

0.13 

0.12 

0.17 

0.15 

0.28 

0.26 

0.32 

0.20 

0.31 

0.31 

0.11 

0.14 

0.18 

0.17 

0.27 

0.27 

0.31 
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11 

12 

13 

 26.83 

 24.00 

 24.00 

 28.59 

 30.00 

 30.00 

0.20 

0.33 

0.30 

0.17 

0.31 

0.31 

 

 

Table 3.4: Analysis of variance (ANOVA) data for optimization of aqueous extract of 

bagasse fermentation 

 

Source Sum of Squares DF F value Prob > F  

Model 

 A-Time 

 B-Temp 

 AB 

 A2 

 B2 

 Residual 

Lack of Fit 

Pure Error 

Cor Total 

0.068 

0.018 

7.268E-005 

4.422E-003 

0.019 

0.032 

4.614E-003 

2.140E-003 

2.473E-003 

0.073 

 

5 

1 

1 

1 

1 

1 

7 

3 

4 

12 

20.74 

27.68 

0.11 

6.71 

29.56 

48.34 

 

1.15 

 

 

 

 

0.0005 

0.0012 

0.7496 

0.0359 

0.0010 

0.0002 

 

0.4299 

Significant 

 

 

 

 

 

 

Not Significant 

Std. Dev.     0.026 R-Squared   0.9368 

 Mean        0.24                         Adj R-Squared 0.8916 

 C.V. %     10.91                      Pred R-Squared 0.7385 

PRESS         0.019                      Adeq Precision 11.386 
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The data shows fitness with a second order polynomial equation, which are considered 

statistically significant at P < 0.05. In this case, the linear as well as quadratic effect of 

fermentation time (A, A2), interactive effect of time and temperature (AB), and quadratic 

effect of temperature (B2) are the significant model terms. F-value of model of 20.74 proves 

the significance of model (P < 0.05).Only 0.05% chance that this large F valueis by 

noise.Lack of Fit value of 1.15 implies the Lack of Fit as not significant with respect to the 

pure error.  Only 42.99% chance that a "Lack of Fit " is by noise. Goodness of fit was 

checked by values of determination coefficient (R2). As shown in Table 3.4., the R2 value of 

0.9368 was in good agreement with the adjusted R2 value of 0.8916 and predicted R2 value of 

0.7385 having adequate precision of 11.38.  The predicted versus actual curve shows 

conformation between the predicted value and the actual data (Figure 3.1.a). Lack of trend in 

the plot shows data with acceptable variance without any outliners of experimentation (Figure 

3.1.b).The coefficient of variation (CV) was also as low as 10.91, which is indicative of low 

deviations between experimental and predicted values. Value of “adequate precision ratio” of 

11.38 indicates an ample signal. 

a   
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b  

Figure 3.2. Plot of experimental versus predicted values (a) and plot of studentized residual versus predicted 

values (b) of bagasse extract fermentation by S. cerevisiae. 

 

 

The three dimensional and interaction plots help to find out the values for each factor to 

maximize ethanol production from Saccharomyces cerevisiae MTCC 180 which can be 

shown in Figure 3.2. From the results shown as the graphical interpretation, it is very clear 

that with increase in time, the ethanol production has slightly increased up to 22.6 h after 

which there is a gradual decrease.  
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 a   

b    

Figure 3.3. Three dimensional (a) and linear plots (b) of the interaction of time and temperature variables with 

ethanol yield for bagasse extract fermentation by S. cerevisiae 

The ethanol productivity however has been found to increase sharply up to 30°C after which 

there is a gradual decline.  At the lower value of temperature 28.58°C, the ethanol content 

decreases at a much slower pace; whereas at higher value of temperature 31.41°C, the ethanol 
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content shows a very sharp decline with time. Overall, though the nature of ethanol 

production follows almost similar patterns at lower as well as higher values of temperatures; 

the amount of ethanol produced is more at lower temperature and less fermentation time. 

 

3.3.3. Validation of the predicted model 

The predicted time-temperature values best suited for ethanol production is at 22.60 h 

at30.20°C having ethanol yield of 0.321 gm/100 ml.  The desirability function value of 0.975 

is indicative of significance of the obtained result. In this condition, validation experiments 

were conducted to validate the obtained data. The experimental result was around 0.342 

gm/100 ml which was conforming to the predicted value of 0.321gm/100 ml, having absolute 

residual error of 6.14 %. Several studies also found fermentation time and temperature as 

important parameters in studying optimization of fermentation process using synthetic media 

or various agro-industrial wastes for efficient generation of bioethanol [30, 31, 32, 33, 34]  

 

3.4. CONCLUSION 

This study yielded valuable results that may be useful in the utilization of one of the most 

important lignocelluloisic biomass generated in sugarcane processing. Bagasse, one of the 

most abundantly available agro-industrial and sugarcane processing wastes, was utilized in 

this study, and its aqueous extract was easily prepared, and converted into a nutrition-rich 

fermentable substrate for ethanol production. S. cerevisiae MTCC 180 strain was selected as 

the fermenting yeast strain, as it is capable of fermenting substrates with moderate to low 

sugar concentration. The optimization of fermentation parameters using single factor led to 

average ethanol yield of 0.3196 ± 0.004 g/100 ml at the rate of 0.133 g/L/h achieved at a 

substrate pH of 4, at 30°C fermentation temperature for 24 h using an inoculum size and age 
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of 6% (v/v) and 48 h, respectively. Rotatable central composite design of response surface 

methodology was applied for optimization of fermentation time (22.60 h) and temperature 

(30.20°C) which showed an ethanol yield of 0.321 g /100 ml at the rate of 0.142 g/L/h which 

is quite consistent with the result obtained initially by OVAT. The un-optimized fermentation 

media was giving 2.5 times less yield than optimized substrate having an absolute residual 

error of 6.14 %.Further nutritional supplementation studies using different sugar or nitrogen 

sources and introducing mineral sources can be evaluated to further improve fermentation 

efficiency and yield. 
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Chapter title: Optimization of the nutritional parameters for the 

fermentation process 

 

4.1. INTRODUCTION 

Sugarcane bagasse is currently one of the world’s principle solid wastes generated chiefly 

from sugar processing. India being one of the leading sugar-producing countries, about 370 

million tonnes of sugarcane was produced in 2020 showing an average annual growth rate of 

2.78% from 126 million tonnes produced in 1971 [1]. The manufacturing of sugar may 

generate several types of by-products and/or wastes that includes bagasse, molasses, fly ash, 

pressed mud, spent wash, etc., bagasse being the most economically important. Bagasse is the 

fibrous residue after juice is expressed, and it mainly consists of cellulose, hemicellulose and 

lignin [2]. It finds its use in several ways like fuel, ash for brick making, in paper industry or 

as fermentation substrate for production of ethanol.  

The forms of bagasse used for fermentation substrate varied from simply using the solid 

residue after some chemical pre-treatment [3], or bagasse hydrolysate after mechanical 

refining [4] or vacuum concentration [5]. Several studies confirmed the use of various species 

of Saccharomyces yeast for fermenting food or agricultural wastes as well as lignocellulosic 

biomass like bagasse [6, 7]. Saccharomyces bayanus was used on pre-treated solid 

bagasse [8], while xylose fermenting S. cerevisiae strain fermented sugarcane bagasse 

hydrolysate to yield ethanol [9]. Fermentation conditions optimization and nutritional 

enrichment of these organic waste substrates can enhance the overall yield of bioethanol [10, 

11]. Nutritional enrichment of low-cost media has been proven to be helpful in various 

studies especially for ethanol production using Saccharomyces species [12, 13, 14]. 
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This chapter is focused on optimization of different nutritional supplementations for S. 

cerevisiae MTCC 180fermentation of aqueous extract of bagasse, including statistical 

optimization of some parameters using one factor at a time and one way ANOVA initially, 

and later using central composite design model of response surface methodology. 

 

4.2. MATERIALS AND METHODS 

 

4.2.1. Collection of sample and culture maintenance 

The process has been described in details in chapter 3 section 3.2.1. of materials and method. 

 

4.2.2. Aqueous extract of bagasse preparation   

The process has been described in details in chapter 2 section 2.2.2. of materials and method. 

 

4.2.3. Selection and optimization of nutritional conditions 

The aqueous extract of bagasse was fermented using the secondary fermenting yeast S. 

cerevisiae MTCC 180 culture. The conditions of fermentation were previously optimized i.e., 

pH of 4, fermentation duration of 22.06 hours, temperature of 30.20°C, inoculum size of 

6%,and48 h old culture, as discussed in detail in chapter 3. Keeping these conditions 

constant, at first the sugar source, nitrogen source and the mineral source for the said process 

was selected and restructured using OVAT. Three different sugar sources such as glucose, 

fructose and sucrose at 1 % (w/v) concentration, and nitrogen sources like ammonium 

chloride, ammonium sulphate and urea at 1 % (w/v) concentration were tested for selection. 

To select a suitable mineral source, magnesium sulphate, ferrous sulphate, calcium chloride, 

potassium chloride and sodium chloride were used at 0.1 mg/ml concentration each. 
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Quantification of the sugar, nitrogen and mineral source was done after each selection 

process over a range of values. 

 

4.2.4. Experimental design and statistical data analysis 

Three replicates of each of the experiments were performed in OVAT, and the averages and 

the standard deviations were analysed using one way ANOVA (MS Excel 2013) at 

significance level of P 0.05. The Coefficient of variation (CoV), tcritical values at α value 0.05 

were also obtained. Fisher’s Post Hoc test of least significant difference (LSD) values were 

calculated to check the significance of the obtained value in accordance with the given 

formula in equation 1. 

(1) 𝐿𝑆𝐷 = 𝑡𝑐𝑟𝑖𝑡√𝑀𝑆𝑊 (1
𝑁1

⁄ + 1
𝑁2

⁄ )                                                     

Where, MSW is the mean square value within groups, N1 and N2 are the respective sample 

sizes. Since three replicates for each of the values were obtained, so in this case, N1= N2= 

3[15]. 

The variables were optimized using RSM. The CCD was utilized to interpret data conforms 

to second order polynomial model having three independent variables sucrose content, 

Ammonium sulphate content and potassium chloride content, and one dependent factor 

ethanol yield. The data was taken in five level having six centre points and the fitness of the 

model was expressed by the values of coefficient of determination (R2). The three-

dimensional response surface plots give the relationship between the responses and the 

factors to maximize ethanol production. The combination of these predicted parameters that 

gave maximum yield of ethanol were tested to validate the model.  Design-Expert Version 

7.0.0, was used for analysis for statistical validation 2021, Stat-Ease (Minneapolis, USA). 
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4.2.5. Ethanol Estimation 

The process has been described in details in chapter 1 section 1.2.6. and chapter 3 section 

3.2.5 of materials and method. 

 

4.3. RESULT AND DISCUSSIONS 

 

4.3.1. Nutritional condition selection and optimization using OVAT 

Enrichment of the fermenting substrate with sugar, nitrogen and mineral sources resulted in 

optimum ethanol yield. Among the three sugars used for supplementation, sucrose was found 

to have the highest increment in ethanol production (Fig. 4.1.a) followed by fructose and 

glucose. Table 4.1.a) and b) gives the detailed values of ethanol contents, standard deviations, 

coefficient of variation (CV), tcritical and least significant difference (LSD), which also 

complements the graphical data. As the sucrose supplementation was increased, ethanol yield 

increased, and reached the highest at 4% (w/v) level at 1.771 ± 0.1 g/ 100 ml (Fig. 4.1. b). 

After this value, there is a slight dip followed by almost a constant ethanol yield. This may be 

attributed to either increase in hydrolysate concentration that may inhibit yeast activity and/or 

to deactivation of the yeast enzymes due to increase in ethanol production. 

 

Table 4.1. a): Selection of different sugars for fermentation using bagasse extract 

 

Sugar source Ethanol content (g/100ml) CV t0.05 LSD0.05 

Glucose 0.558± 0.01a 0.022 

2.44 0.018 Fructose 0.584± 0.005b 0.008 

Sucrose 0.605±0.009c 0.015 
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Table 4.1. b): Sucrose optimization for fermentation using bagasse extract 

 

Sucrose % Ethanol content (g/100ml) CV t0.05 LSD0.05 

0.5 0.520 ± 0.006a 0.012 

2.11 0.135 

1 0.605 ± 0.009a 0.015 

2 0.759 ± 0.069b 0.09 

3 1.38 ± 0.069c 0.05 

4 1.771 ± 0.105d 0.059 

5 1.518 ± 0.119e 0.078 

6 1.632 ± 0.052e 0.032 

7 1.633 ± 0.105e 0.064 

 

a b  

Fig. 4.1. Graphs showing ethanol content after substrate supplementation with a) different sugar sources, b) 

optimization and quantification of selected sugar (sucrose) supplementation 

 

Some S. cerevisiae species may lack the major hexose transporters (hxt1-hxt7), and (gal2), 

and prefer sucrose instead of monosaccharide like glucose and fructose [16].The MTCC 180 

strain used in this study may also have similar genotypic characteristic. Another study used 

sucrose as the primary sugar supplement in fermenting cashew apple bagasse for alcohol 

production by S. cerevisiae [17]. Published report also emphasized that fermentation 
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performance of Saccharomyces spp. may be hampered with high sucrose concentration above 

3.1 % [18]. 

 

Three different sources of nitrogen such as ammonium sulphate, ammonium chloride and 

urea were used for supplementing the fermentation substrate at a fixed sucrose concentration 

of 4% (w/v). The values (Table 4.2.a) depicts that among the three nitrogen sources, 

ammonium sulphate supplementation produced the highest ethanol yield (Fig. 4.2.a). Though 

the ethanol yield values for ammonium sulphate and ammonium chloride were not 

significantly different; but based on previously published reports, as well as considering 

higher mean value of ethanol yield, ammonium sulphate was chosen as more suitable for 

nitrogen supplementation. Table 4.2.b shows that the highest ethanol content of 1.897±0.03 

g/100 ml achieved at 0.5 % (w/v) ammonium sulphate concentration , and any further 

increase in concentration reduced the ethanol yield (Figure 4.2.b). A similar study used 

organic sources like yeast extract, peptone, tryptone and urea, and inorganic sources like 

ammonium sulphate, ammonium nitrate and ammonium chloride, each at 1% concentration, 

as nitrogen supplement in the fermentation substrate of bagasse hydrolysate to get ethanol 

yield of 61ml/l [19].  

 

Table 4.2. a): Selection of different nitrogen source for fermentation using bagasse extract 

 

Nitrogen source Ethanol content (g/100ml) CV t0.05 LSD0.05 

Ammonium Sulphate 1.598±0.189a 0.1188 

2.44 0.58 Ammonium Chloride 1.253±0.071a 0.0572 

Urea 0.425± 0.468b 1.101 
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Table 4.2. b): Ammonium sulphate optimization for fermentation using bagasse extract 

 

Ammonium sulphate % Ethanol content (g/100ml) CV t0.05 LSD0.05 

1 1.598±.189a 0.118 

2.228 0.262 

0.5 1.897±0.03b 0.018 

0.1 1.632± 0.207a 0.127 

0.05 1.667 ± 0.143ab 0.086 

0.01 1.437± 0.052a 0.036 

 

a b

Fig. 4.2. Graphs showing ethanol content for substrate supplementation with a) selected nitrogen sources, b) 

optimization and quantification of selected nitrogen source (ammonium sulphate) supplementation 

 

The mineral source selection showed the highest ethanol yield using potassium chloride 

closely followed by magnesium sulphate (Figure 4.3.a), when sucrose and ammonium 

sulphate were supplemented at 4% and at 0.5% (w/v) concentrations, respectively (Table 

4.3.a). Potassium chloride optimization gives highest ethanol yield (1.598± 0.05 g/ 100 ml) at 

0.1 mg/ml concentration (Figure 4.3.b, Table 4.3.b). A study using genetically modified S. 

cerevisiae in co-fermentation of glucose and xylose reported similar results, and suggested 

that substrate supplementation with salt can be, to a certain extent, inhibitory to the yeast 
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fermentation. However, they also reported that potassium salts are less inhibitory than others 

[20]. 

Table 4.3. a): Selection of different mineral source for fermentation using bagasse extract 

 

Mineral source Ethanol content (g/100ml) CV t0.05 LSD0.05 

MgSO4 1.242± 0.03a 0.027 

2.228 0.176 

FeSO4 1.092± 0.13a 0.119 

CaCl2 1.138± 0.1a 0.09 

KCl 1.598± 0.05b 0.033 

Nacl 0.966± 0.12ac 0.128 

 

 

Table 4.3. b): Potassium Chloride optimization for fermentation using bagasse extract 

 

Potassium chloride 

(mg/ml) 

Ethanol content (g/100ml) CV t0.05 LSD0.05 

0.01 0.85± 0.13a 0.153 

2.228 0.23 

0.05 0.92±0.1a 0.114 

0.1 1.598± 0.05b 0.033 

0.2 1.138±0.15ac 0.139 

0.5 1.046± 0.16a 0.155 
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a b  

Fig. 4.3. Graphs showing ethanol content for substrate supplementation with a) selected mineral sources, b) 

optimization and quantification of selected mineral source (potassium chloride) supplementation 

 

4.3.2. Nutritional optimization using Response Surface Methodology 

 

The three factors for optimization of nutrients-sugar source, nitrogen source and mineral 

source were re-optimized through response surface methodology. The actual and coded 

values of the experimental design can be shown in Table 4.4. 

 

Table 4.4.: The actual and coded values for the experiment in response surface methodology 

Factor Name with Unit Low 

Actual 

High 

Actual 

Low 

coded 

High 

coded 

Mean Std. 

dev 

A Sucrose (%) 3.41 4.59 -1.000 1.000 4.000 0.491 

B Ammonium Sulphate (%) 0.44 0.56 -1.000 

  

1.000 0.500 0.049 

C Potassium Chloride (mg/ml) 0.070 0.13 -1.000 

  

1.000 0.100 0.025 
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The final equation predicted in terms of coded and actual factors are given respectively as 

follows- 

 Ethanol content (coded factor) = +2.39 + 0.081* A+ 0.031* B+ 0.13* C+ 0.016* A * B - 

0.025* A * C-0.031* B * C- 0.36* A2- 0.34* B2- 0.18* C2 

Ethanol content (actual factor) = -41.79523+ 8.15400 * Sucrose+ 97.15373* Ammonium 

Sulphate+ 59.21060* Potassium Chloride +0.46315 * Sucrose * Ammonium Sulphate -

1.42128 * Sucrose * Potassium Chloride -17.46554* Ammonium Sulphate * Potassium 

Chloride -1.01332* Sucrose2 -96.73228* Ammonium Sulphate2 -201.52913* Potassium 

Chloride2 

 

The experimental design shown in Table 4.5. gives all possible combinations of process 

parameters for increasing ethanol yield. The data shows fitness with a second order 

polynomial equation, which are considered statistically significant at P-value less than 0.05. 

In this case, sucrose content (A), potassium chloride content (C) and quadratic effect of all 

the factors (A2, B2, C2) are the significant model terms. 

 

Table 4.5.: Experimental design, observed and predicted responses of nutritional 

optimization using central composite design 

 

Run Sucrose (%) Ammonium Sulphate 

(%) 

Potassium Chloride 

(mg/ml) 

Observed 

Response 

Predicted 

Response 

1 3.41 0.56 0.07 1.26 1.32 

2 4.00 0.50 0.05 1.67 1.66 

3 4.00 0.50 0.10 2.48 2.39 

4 4.59 0.44 0.13 1.69 1.69 
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5 4.59 0.56 0.13 1.67 1.72 

6 4.00 0.50 0.10 2.30 2.39 

7 4.00 0.40 0.10 1.44 1.37 

8 4.00 0.50 0.10 2.42 2.39 

9 4.00 0.50 0.10 2.45 2.39 

10 4.00 0.50 0.10 2.20 2.39 

11 3.41 0.44 0.07 1.23 1.23 

12 3.41 0.56 0.13 1.58 1.57 

13 4.00 0.60 0.10 1.48 1.48 

14 5.00 0.50 0.10 1.52 1.52 

15 4.00 0.50 0.10 2.50 2.39 

16 4.00 0.50 0.15 2.18 2.11 

17 4.59 0.56 0.07 1.62 1.57 

18 3.41 0.44 0.13 1.50 1.61 

19 4.59 0.44 0.07 1.36 1.41 

20 3.00 0.50 0.10 1.31 1.24 

  

 

F-value of model 39.38 implies that the model is significant having P-value < 0.0001. There 

is only a 0.01% chance that a Model F-Value" is by noise. Lack of Fit F-value of 0.52 implies 

the Lack of Fit is not significant relative to the pure error.  There is a 75.30 % chance that a 

"Lack of Fit F-value" this large could occur due to noise. The goodness of fit of the model 

was checked by the values of determination coefficient (R2). As shown in Table 4.6., the R2 

value of 0.9726 was in confirmation with the adjusted R2 value of 0.9479 having adequate 

precision of 15.95. The predicted R2 value of 0.8972 is in reasonable conformation 

withadjusted R2 value of 0.9479. The CV was also as low as 5.76 that is indicative of low 

deviations between experimental and predicted values predicts accuracy and model 
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redundancy. Adequate precision ratio of 15.95 indicates an ample signal which measures the 

signal to noise ratio. The predicted versus actual curve shows very less deviations between 

the values. (Figure 4.4.a). 

 

Table 4.6.: Analysis of variance (ANOVA) data for nutritional optimization 

 

Source Sum of Squares DF Mean Square F value Prob > F  

Model 3.77 9 0.42 39.38 < 0.0001 Significant 

A-Sucrose 0.090 1 0.090 8.50 0.0154  

B-Ammonium 

Sulphate 

0.013 1 0.013 1.26 0.2874  

C-Potassium Chloride 0.24 1 0.24 22.83 0.0007  

AB 2.145E-003 1 2.145E-003 0.20 0.6630  

AC 5.050E-003 1 5.050E-003 0.47 0.5066  

BC 7.626E-003 1 7.626E-003 0.72 0.4171  

A2 1.85 1 1.85 173.80 < 0.0001  

B2 1.69 1 1.69 158.38 < 0.0001  

C2 0.46 1 0.46 42.96 <0.0001  

Residual 0.11 10 0.011    

Lack of Fit 

 

0.037 5 7.310E-003 0.52 0.7530 not significant 

Pure Error 0.070 5 0.014    

Cor Total 3.88 19     

Std. Dev. 0.10  R-Squared 0.9726   

Mean 1.79  Adj R-Squared 0.9479   

C.V. % 5.76  Pred R-Squared 0.8972   

PRESS 0.40  Adeq Precision 15.959   
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a   

b     

c      

 

 

Lambda; Current =1, Best= -0.4, Low C.I. = -1.98, High C.I. = 1.17 

Recommended Transform: None (Lambda =1) 

 



144 | P a g e  
 

Fig 4.4. Plot of predicted versus actual (a), Normal Plot of residuals (b), and Box–Cox plot of model 

transformation (c) of nutritional optimization of aqueous extract of bagasse used as a substrate for optimizing 

fermentation by S. cerevisiae MTCC 180  

 

Lack of any trend in the plot of studentized residual versus the values predicted by the model 

shows that the variances in the data are acceptable, without outliers. (Figure 4.4.b). The Box–

Cox plot of model transformation (Figure 4.4.c) shows that the optimum value 1of lambda 

present between the two red lines interpreting no requirement of data transformation. The 

predicted best value of lambda is shown at -0.4, which signifies that the current lambda value 

of 1 is more towards the higher lambda value limit. 

 

a   

b   
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c  

Fig. 4.5. Interaction curves showing ethanol production with a) Sucrose optimization, b) Ammonium sulphate 

optimization, c) Potassium chloride optimization for bagasse extract fermentation by S. cerevisiae MTCC 180  

 

 

The linear plots show the interaction between the independent variables, and helps to find out 

the optimum value for each factor to maximize ethanol production, as shown in Figure 4.5. It 

is evident that initially at around with 3.4 % sucrose supplementation, the ethanol yield was 

less, the yield gradually increased until 4% supplementation, and subsequently it decreased 

considerably (Figure 4.5.a). Ammonium sulphate shows a rather symmetrical rise in ethanol 

yield at the mean value of 0.5%, and the yield decreases in the same manner at higher levels 

of supplementation (Figure 4.5.b). Potassium chloride resulted in a very flat rise in the 

ethanol yield curve to a maximum at 0.11 mg/ml supplementation, followed by insignificant 

but discernible decrease beyond that value (Figure 4.5.c).  
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e  f  
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Fig. 4.6. Three dimensional and linear interaction plots for (a and b) A – sucrose supplementation and B- 

Ammonium sulphate supplementation, (c and d) A – sucrose supplementation and C – Potassium chloride 

supplementation (e and f) and B – Ammonium sulphate supplementation and C – Potassium chloride 

supplementation (Red dots within the response curves represent experimental design points obtained during the 

CCD-RSM while contour lines show prediction outputs calculated by the mathematical model.) 

 

The three dimensional plots of dual factor interaction among the independent variables show 

that the basic nature of the curve is convex (Figure 4.6). That means it starts with low initial 

values, rises in beteween at its optimal value, and decreases further upon increasing the 

nutritional supplementation. Keeping potassium chloride content of 0.1mg/ml, the first curve 

(Figure 4.6a,b) depicts that at 0.44 % ammonium sulphate, the ethanol yield rises and falls at 

0.559 % upon increasing the amount of sucrose in the substrate. The overall ethanol 

productionis higher at 0.559 % ammonium sulphate and with increased sucrose 

supplementtion in the feremntation substrate. Though the initial yield was almost same, the 

ethanol content slightly increases afterwards. The second part of the curve (Figure 4.6c, d) 

shows that at potasssium chloride content of 0.07 or 0.13 mg/ml, the nature of the curve is 

exactly same starting from lower to higher value of sucrose supplementation, when 

ammonium sulphate value is kept constant at 0.5 %. The net ethanol production is significntly 

higher in case of potassium content of 0.13 mg/ml. In the third part of the curve (Figure 4.6e, 

f), sucrose supplementation was kept at a constant level of 4%, both lower and higher values 

of potassium chloride between the range of 0.07 or 0.13 mg/ml gives the same graphical 

pattern. The net ethanol content is more in case of potassium chloride content of 0.13 mg/ml. 

From these graphs we can say that sucrose content as well as the mineral content of the 

substrate quite significantly affects the overall ethanol content.  
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4.3.3. Confirmation of the predicted model 

 

The study of the plots gives the best predicted values of nutritional enrichment at 4.06 % 

sucrose, 0.5% ammonium sulphate and 0.11 mg/ml potassium chloride having an ethanol 

yield of 2.42 gm/100 ml with desirability function value of 0.941 which is indicative of good 

significance of the obtained result. Using such conditions, replicate experiments were 

conducted again. The experimental result was around 2.345 gm/100 ml which was largely in 

agreement with the predicted value of 2.42 gm /100 ml of ethanol content. The experimental 

value was96.9 % of the predicted value of the modified quadratic model (Table 4.7). So, the 

observed value was in good agreement with the predicted value that confirms to the 

sufficiency and significance of model. 

 

Table 4.7: Validation data for the predicted model for fermenting bagasse aqueous extract 

using saccharomyces cerevisiae MTCC 180 

 

Response Software prediction value 

(g /100 ml) 

Validity experiment value 

(g /100 ml) 

95% CI low 95% CI high 

Ethanol yield 2.42 2.345 2.33 2.51 

 

 

4.4. CONCLUSIONS 

 

India is among the world’s leading generator of bagasse wastes, which is abundantly 

available, and can be put to various industrial uses including production of ethanol as a 

biofuel through fermentation. The aqueous extract of bagasse was easily prepared, and 

converted into a nutrition-rich fermentable substrate for ethanol production by supplementing 
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nutrients. When the factors were optimized using Design expert® software, the ethanol yield 

of 2.42 g/100 ml at the rate of 1.07 g/L/h was obtained. The validation of nutritional 

parameters gave maximum ethanol yield of 2.345 g/100 ml at the rate of 1.037 g/L/h 

achieved at 4.06% sucrose, 0.5 % ammonium sulphate and 0.11 mg/ml potassium chloride. 

The results were consistent with the results of 4% sucrose, 0.5 % ammonium sulphate and 0.1 

mg/ml potassium chloride as obtained from the studies of one variable at a time. The non-

supplemented medium, even under optimized fermentation conditions, gave 7.5 times lesser 

yield. The study reveals that sucrose, ammonium sulphate and potassium chloride 

significantly improved ethanol yield, and the modified quadratic model suggested by the 

software was adequate (p < 0.0001), as the R2, adjusted R2 and CV values showed 

acceptability and accuracy of the model. 
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Chapter title: Ethanol production from immobilized cells of 

Saccharomyces cerevisiae MTCC 180 

 

5.1. INTRODUCTION 

 

Chemical synthesis of industrially valuable products like fuels, chemicals and various other 

materials gives high yield but are damaging to the environment due to production of huge 

amount of toxic by-products. The trend is towards the development of sustainable 

biocatalytic processes which not only are environment friendly but also gives substantial 

amount of yield [1]. Biocatalysis using whole cells allow production either through multistep 

reactions, or by cofactor regeneration with high regio- and stereo selectivity but under mild 

operational conditions [2]. These advantages are magnified if these whole cells are 

immobilized in a matrix to perform the process. The definition of immobilization of whole 

cells states that “It is the physical confinement or localization of intact cells to a certain 

region of space; without loss of desired biological activity” [3]. Immobilization of cells have 

been found to be much more efficient than its freely suspended counterparts as it allows easy 

separation of biomass or product recovery.  

Second generation ethanol production is the latest trend, which could be developed 

successfully by utilizing some wastes with low-cost yeast immobilization. Effective sugar 

utilization and resistance to inhibitors are more evident in immobilized cells. Most common 

types of yeast immobilization uses calcium alginate as the carrier along with agar-agar, 

alginate, chitosan, biochar, carrageenan, luffa sponge etc.; multispecies biofilm membrane 

being the latest one [4]. Agar immobilization of yeast was performed by some researchers 

that included production of ethanol in a tubular reactor using agar immobilized 

Saccharomyces cerevisiae [5] orco-immobilizing yeast using agar-alginate combinations [6]. 
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Saccharomyces cerevisiae MTCC 174 was immobilized in agar cubes produced bioethanol of 

9.4 g/L which gave much better yield than free cells [7].  

Food processing and agro-industrial wastes are a global problem that needs to be eradicated 

by conversion techniques that will fetch useful products. This biomass can be converted to 

fuel like bioethanol, and can be utilized as a potential renewable source of energy or can be 

used as laboratory solvent. About 10 -14 % of global energy crisis is now being solved by the 

use of lignocelluloisic biomass as a substrate for production of bioethanol. Among various 

organisms involved in this biocatalysis, Saccharomyces cerevisiae is one of the most popular 

that can be used for fermenting the waste to generate bioethanol [8]. 

This chapter deals with bioethanol production from immobilized S. cerevisiae MTCC 180 

under conditions of optimization. The entrapment of the species was done using agar-agar 

matrix in the form of cubes prepared to perform the fermentation of aqueous extract of 

bagasse. The optimization was performed initially using one variable at a time, and then 

using central composite design of response surface methodology. 

 

5.2. MATERIALS AND METHODS 

 

5.2.1. Fermentation substrate preparation 

The process has been described in details in chapter 2 section 2.2.2. of materials and method. 

5.2.2. Maintenance and preparation of inoculum 

The process has been described in details in chapter 3 section 3.2.1. of materials and method. 

 

5.2.3. Measurement of cell count  

Cell count gives us an idea of the growth rate of cells in a given population. The 48 h old 

culture, grown in 50 ml YEPD broth, was plated in YEPD agar media to count the 
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approximate number of cells present using spread plate technique [9]. The temperature of 

incubation was kept at 30°C and a dilution of 107 was performed using buffered peptone 

water. After 48 h incubation, the plates were counted using digital colony counter. 

 

5.2.4. Immobilization of culture, preservation and reuse 

In accordance with a previously optimized fermentation conditions as described in chapter 3, 

the 48 h old inoculum was considered for further experiments. Agar containing 0.9% sodium 

chloride were mixed in a solution of distilled water and autoclaved at 15 psi for 15 min at 

121°C. The sterile agar is then cooled to 30°C and mixed with the prepared inoculum. The 

mixture was poured in Petriplates and kept for solidification of the agar. On solidification, 

they were cut into pieces of small cubes and preserved in 0.1 (M) phosphate buffer solution 

of pH 5.5 in refrigerated conditions for 1 h. For reusing the immobilized culture, it must be 

taken out of refrigeration to achieve room temperature and washed with cold sterile water 2-3 

times before they are used as inoculum [10].   

 

5.2.5. Examination of immobilized pieces with and without cell using Scanning Electron 

Microscopy (SEM) 

The topology of immobilized agar pieces was observed with and without yeast cells using 

Scanning Electron Microscope (Merlin, Zeiss) at varied magnification. The samples were 

mounted on the stub, and then coated with gold for observation under microscope. 

 

5.2.6. Optimization of immobilized conditions using OVAT 

 

The bagasse extract was fermented using S. cerevisiae MTCC 180 culture in immobilized 

form. The conditions of fermentation and nutritional supplementation were previously 
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optimized and those optimized conditions were used keeping the fermentation pH at 4, time 

22.06 hours, temperature 30.20°C, using inoculum size of 6% with 48 h old culture of 

inoculum, containing 4% sucrose, 0.5 % ammonium sulphate and 0.1 mg/ml potassium 

chloride, as discussed in chapter 3 and 4. Keeping these conditions constant, four different 

parameters- fermentation time, agar concentration, gel formation time and cell concentration 

were selected and optimized using OVAT method. The fermentation time was varied from 20 

to 28 h, agar concentration from 3 to 5 %, gel formation time from 10 to 30 minutes and cell 

concentration from 5 to 12 %. The optimized values were selected to carry out further 

experiments. 

 

5.2.7. Experimental design and statistical data analysis 

 

Each of the experiments were performed in three replicates in OVAT where the mean value 

and the standard deviations were analysed using one way ANOVA (MS Excel 2013) at 

significance level of P 0.05. The Coefficient of variation (CV), tcritical values at α value 0.05 

were also obtained. Fisher’s Post Hoc test of least significant difference (LSD) values were 

calculated to check the significance of the obtained value in accordance with the given 

formula in equation 1. 

(1) 𝐿𝑆𝐷 = 𝑡𝑐𝑟𝑖𝑡√𝑀𝑆𝑊 (1
𝑁1

⁄ + 1
𝑁2

⁄ )                                                     

Where, MSW is the mean square value within groups, N1 and N2 are the respective sample 

sizes. Since three replicates for each of the values were obtained, so in this case, N1= N2= 3 

[11]. 

Three different independent variables were further optimized using rotatable central 

composite design (RCCD) of response surface methodology (RSM). The data fits on a second 

order polynomial model having three independent factors fermentation time (h), agar 
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concentration (%) and cell concentration (%), and one dependent factor ethanol yield (g/100 

ml). The data was taken in five level having six centre points and the fitness of the model was 

determined by the values of coefficient of determination (R2). The three dimensional 

response surface plots gives the relationship between the responses and the factors to 

maximize ethanol production. The combination of these predicted parameters that gave 

maximum yield of ethanol were tested to validate the model.  Statistical evaluation was 

performed using Design-Expert Version 7.0.0, 2021, Stat-Ease (Minneapolis, USA). 

 

5.2.8. Ethanol Estimation 

The process has been described in details in chapter 1 section 1.2.6. and chapter 3 section 

3.2.5 of materials and method. 

 

5.3. RESULT AND DISCUSSIONS 

 

5.3.1. Cell count value of inoculum 

The incubation of the cells showed growth on the agar plate that can be calculated using 

digital colony counter. The average readings on three successive replicate plates was found to 

be 209x 107 CFU/ml. The approximated CFU per beads ranges from 17.41x 107 - 41.8 x 107 
 

a    b   

Fig. 5.1. (a) Yeast cells immobilized in agar blocks (b) Approximate size of each block 1.2x1 cm 
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depending on the cell concentration used for immobilization. Yeast immobilized on 

polyurethane foam used for bioremediation of phenol showed a cell concentration of 2.5 x106 

CFU/ cm at 24 h which is suggestive of biofilm formation [12] whereas when Saccharomyces 

cerevisiae var boulardii was immobilized on apple pieces, it maintained a viable count of 

6.7–6.9 log CFU/g for all contact times starting from the time of immobilization [13]. 

 

5.3.2. SEM view of immobilized cells 

 

The agar pieces with immobilized yeast cells are made into blocks of approximate size 1.2 x1 

cm (Figure 5.1).The Scanning electron microscope view of the agar blocks with and without 

cells can be shown in Figure 5.2. 

a  b  

c  d  
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Fig. 5.2. Distribution and topology of Saccharomyces cerevisiae MTCC 180 cells immobilized in agar matrices 

in varied magnification 500X, 1000Xand 10,000X (a, b and c) and agar matrix without cells at 500X 

magnification (d). 

 

The microscopic view at 500 times magnification (Figure 5.2 a) of the immobilized cells 

reveals irregular surface scaffolds of agar where almost even distribution of yeast cells can be 

seen. At higher magnification of 1000 and 10000 times (Figure 5.2 b and c) it was found that 

the cells are evenly distributed in the matrix, and structural similarities reveal the presence of 

S. cerevisiae MTCC 180 culture. The view of agar matrix with cell only reveals wavy surface 

of agar along with presence of some geometrically shaped salt crystals (Figure 5.2 d). Beads 

of porous agar matrix used for ethanol production from cane molasses showed similar 

structural patterns [14]. Clustered yeast cell and biofilm formation was evident as reported by 

researchers when they tried to immobilized yeast using alginate beads or any other fibrous 

matrices [15, 16]. 

 

5.3.3. Optimization of parameters of immobilization using OVAT 

 

Several different types of factors influence the immobilization efficiency and in turn affects 

the fermentation ability and yield. The fermentation time under immobilized conditions was 

found to give better results of 1.978 ± 0.1 g/100 ml ethanol yield at 20 h followed by gradual 

decrease in yield (Table 5.1.a).Agar concentration of 4 % gives ethanol content of 2.293± 

0.34 g/100ml, when the fermentation time was kept at 20 h (Table 5.1.b).The upper or lower 

value of agar at 3% or 5% are not very significantly different. At constant value of 

fermentation time and agar concentration of 20 h and 4% respectively, the gel formation time 

gives best result at 20 minutes (Table 5.1.c); the upper and lower values were found to be 
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insignificant. Cell concentration is one of the most important factors in case of cell 

immobilization, since it takes higher cell concentration value in case of immobilized cell than 

free cell. 

 

Table 5.1. Ethanol content, CV, tcritical and LSD values in varied fermentation time (a), agar 

concentration (b), gel formation time (c) and cell concentration (d) of immobilized cell 

fermentation using Saccharomyces cerevisiae MTCC 180 utilizing bagasse water extract 

 

 

Fermentation Time (h) Ethanol content (g/100ml) CV t0.05 LSD0.05 

20 1.978 ± 0.1a 0.053 

2.446 0.339 24 1.506± 0.22b 0.147 

28 1.368± 0.16b 0.118 

a 

 

Agar Concentration (%) Ethanol content (g/100ml) CV t0.05 LSD0.05 

3 1.747± 0.13a 0.079 

2.446 0.496 4 2.293± 0.34b 0.149 

5 1.70± 0.21a 0.128 

b 

 

Gel formation time (minutes) Ethanol content (g/100ml) CV t0.05 LSD0.05 

10 1.678± 0.07a 0.042 

2.446 0.131 
20 1.977± 0.05b 0.026 

30 1.609± 0.07a 0.044 

c 

 

Cell concentration (%) Ethanol content (g/100ml) CV t0.05 LSD0.05 

5 1.782± 0.05a 0.029 

2.178 0.259 

6 1.759± 0.13a 0.078 

7 1.943± 0.26a 0.137 

8 2.254± 0.17b 
0.077 

10 1.874± 0.05a 0.028 

12 1.724± 0.03a 0.02 

d 
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The significantly higher ethanol content was found at 8% cell concentration, when the other 

three factors were kept at a constant at previously optimized values(Table 5.1.d).The 

coefficient of variation (CV), tcritical and LSD values also helped to understand the correlation 

between these factors and are in confirmation with the graphical representation of the data 

(Figure 5.3.). So, the optimized values using OVAT were found to be 20 h, 4%, 20 minutes 

and 8% of fermentation time, agar concentration, gel formation time and cell concentration 

respectively. Very limited number of studies reports immobilization of yeast cells in agar 

matrices. Beads of agar were produced with suspended yeast cells at 3% agar concentration 

using chilled water and vegetable oil mixture as reported by a few studies where they 

fermented cane molasses using immobilized yeast cells [5][14]. Recently some researchers 

reported the use of agar matrix along with other matrices to form combination matrix for 

yeast cell immobilization [6] while others tried different organism like Lycinibacillus 

fusiformis for immobilizing in agar matrices [12].  

 

a  b  

c  d  

1.978
1.506

1.368

0

0.5

1

1.5

2

2.5

20 24 28Et
h

an
o

l C
o

n
te

n
t 

(g
/1

0
0

 m
l)

Fermentation Time (h)

S E L E C T I O N  O F  
F E R M E N T A T I O N   T I M E  

1.747

2.293

1.7

0

0.5

1

1.5

2

2.5

3

3% 4% 5%

Et
h

an
o

l C
o

n
te

n
t 

(g
/ 

1
0

0
m

l)
 

Agar Concentration(%)

SELECTION OF AGAR CONCENTRATION

1.678
1.977

1.609

0

0.5

1

1.5

2

2.5

10 20 30

Et
h

an
o

l C
o

n
te

n
t 

(g
/1

0
0

m
l)

Cube formation time (mins)

SELECTION OF GEL FORMATION TIME

1.782 1.759
1.943

2.254
1.874

1.724

0

0.5

1

1.5

2

2.5

5 6 7 8 10 12

Et
h

an
o

l C
o

n
te

n
t 

(g
/1

0
0

m
l)

Cell Concentration (%)

SELECTION OF CELL CONCENTRATION



164 | P a g e  
 

Fig. 5.3. Graphical representation of selection of fermentation time (a), agar concentration (b), gel formation 

time (c) and cell concentration (d) in immobilized fermentation of Saccharomyces cerevisiae MTCC 180 using 

bagasse water extract 

 

5.3.4. Optimization of yeast immobilization parameters using Response Surface Methodology 

 

The three factors for optimization of yeast immobilization-agar concentration, fermentation 

time and cell concentration were re-optimized through response surface methodology. The 

actual and coded values of the experimental design are shown in Table 5.2. 

 

Table 5.2. The actual and coded values for the experiment in response surface methodology 

 

Factor Name with Unit Low 

Actual 

High 

Actual 

Low 

coded 

High 

coded 

Mean Std. 

dev 

A Fermentation time (h) 18.81 21.19 -1.000 1.000 20.000 0.983 

B Agar concentration (%) 3.41 4.59 -1.000 

  

1.000 4.000 0.491 

C Cell concentration (%) 6.81 9.19 -1.000 

  

1.000 8.000 0.983 

 

 

The final equation predicted in terms of coded and actual factors are given respectively as 

follows- 

Ethanol content (Coded Factors) =+2.16+1.934E-003*A-0.065*B-0.017*C-0.018*A* 

B+0.032*A* C-0.035* B * C-0.26 * A2-0.10 * B2-0.17* C2 

Ethanol content ( Actual Factors)=-83.09233+7.26468* Fermentation time+3.13726* Agar 

conc+1.64756*Cell conc-0.025102*Fermentation time * Agar conc+0.022627* 
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Fermentation time * Cell conc-0.049144* Agar conc * Cell conc-0.18359* Fermentation 

time2-0.29387* Agarconc2-0.11984*Cellconc2 

 

The experimental design shown in Table 5.4. gave all possible combinations of process 

parameters for increasing ethanol yield. The data shows fitness with a second order 

polynomial equation, which are considered statistically significant at P-value less than 0.05. 

In this case, Agar concentration(B), interactive effect of fermentation time and cell 

concentration (AC), interactive effect of agar concentration and cell concentration (BC),  and 

quadratic effect of all the factors (A2, B2, C2) are the significant model terms. 

 

Table 5.3. Experimental design, observed and predicted responses of immobilization 

optimization for yeast using central composite design 

 

Run Fermentation 

time  

(h)  

Agar concentration  

(%) 

Cell concentration 

(%) 

Observed 

Response 

Predicted 

Response 

1 21.19 4.59 9.19 1.50 1.53 

2 18.81 4.59 6.81 1.68 1.66 

3 21.19 3.41 9.19 1.72 1.76 

4 20.00 4.00 10.00 1.70 1.65 

5 20.00 4.00 8.00 2.13 2.16 

6 20.00 3.00 8.00 2.02 1.98 

7 20.00 4.00 8.00 2.15 2.16 

8 21.19 4.59 6.81 1.57 1.57 

9 18.81 4.59 9.19 1.50 1.50 

10 20.00 4.00 8.00 2.19 2.16 

11 20.00 4.00 8.00 2.16 2.16 

12 21.19 3.41 6.81 1.64 1.66 
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13 22.00 4.00 8.00 1.47 1.43 

14 20.00 4.00 6.00 1.70 1.71 

15 18.00 4.00 8.00 1.42 1.42 

16 20.00 5.00 8.00 1.75 1.76 

17 18.81 3.41 9.19 1.63 1.66 

18 18.81 3.41 6.81 1.69 1.69 

19 20.00 4.00 8.00 2.20 2.16 

20 20.00 4.00 8.00 2.14 2.16 

  

The Model F-value of 116.04 implies that the model is significant (P < 0.0001). The "Lack of 

Fit F-value" of 2.40 implies the Lack of Fit is not significant relative to the pure error.  There 

is a 17.96 % chance that a "Lack of Fit F-value" this large could occur due to noise. The 

goodness of fit of the model was checked by the values of determination coefficient (R2). As 

shown in Table 5.3., the R2 of 0.9905 was in adequate to adjusted R2 of 0.9820 having 

adequate precision of 28.33. The predicted R2 value of 0.9451 is in reasonable confirmation 

withadjusted R2 of 0.9905. The CV was very low as 2.05 that is indicative of low deviations 

between experimental and predicted values, which predicts accuracy and model redundancy. 

Adequate precision ratio of 28.33 indicates adequate signal. The predicted versus actual curve 

shows very less deviations between the value predicted by the model and the actual data 

(Figure 5.4.a).  

Table 5.4.: Analysis of variance (ANOVA) data for immobilized yeast fermentation 

optimization 

Source Sum of Squares DF Mean Square F value Prob > F  

Model 1.42 9 0.16 116.04 < 0.0001 Significant 

A- Fermentation time 5.106E-005 1 5.106E-005 0.038 0.8500  

B- Agar concentration 0.057 1 0.057 42.22 < 0.0001  
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C-Cell concentration 3.750E-003 1 3.750E-003 2.77 0.1272  

AB 2.520E-003 1 2.520E-003 1.86 0.2026  

AC 8.192E-003 1 8.192E-003 6.04 0.0338  

BC 9.660E-003 1 9.660E-003 7.13 0.0235  

A2 0.97 1 0.97 716.63 < 0.0001  

B2 0.16 1 0.16 114.75 < 0.0001  

C2 0.41 1 0.41 305.35 < 0.0001  

Residual 0.014 10 1.356E-003    

Lack of Fit 9.566E-003 5 1.913E-003 2.40 0.1796 not significant 

Pure Error 3.990E-003 5 7.980E-004    

Cor Total 1.43 19     

Std. Dev. 0.037  R-Squared 0.9905   

Mean 1.80  Adj R-Squared 0.9820   

C.V. % 2.05  Pred R-Squared 0.9451   

PRESS 0.078  Adeq Precision 28.332   

 

 

a  
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b  

c  

 

 

Fig 5.4. Plot of predicted versus actual (a), Normal Plot of residuals (b), and Box–Cox plot of model 

transformation (c) of immobilized yeast fermentation optimization of aqueous extract of bagasse used as a 

substrate for optimizing fermentation by S. cerevisiae MTCC 180  

 

Lambda; Current =1, Best= -0.72, Low C.I. = -2.94, High C.I. = 1.79 

Recommended Transform: None (Lambda =1) 
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No formation of trends in plot shows acceptable variances and no outliers (Figure 5.4.b). The 

Box–Cox plot of model transformation (Figure 5.4.c) shows that the optimal value of 

Lambda (λ) of 1 lies between the two vertical red lines interpreting no requirement of data 

transformation. The predicted best value of lambda is shown at -0.72, which signifies that the 

current lambda value of 1 is more towards the higher lambda value limit. 

 

a  

b  
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c  

Fig. 5.5. Single factor interaction curves showing production of ethanol with varying a) time of Fermentation, 

b) Agar concentration and c) cell concentration optimized with immobilized Saccharomyces cerevisiae MTCC 

180 fermentation of bagasse extract. 

 

The single factor plots shows individual effects of each of the independent variable and helps 

to get an estimate of the optimum value for each factor to maximize ethanol production as 

shown in Figure 5.5. The factor fermentation time gives lower ethanol yield in lower value 

like 18.81 h, gradually increases at around 20 h and then decreases symmetrically at higher 

values of 21.19 h giving a perfect convex pattern. The overall ethanol yield was less at lowest 

value than the highest value of fermentation time taken. (Figure 5.5. a). Higher ethanol yield 

can be observed at lower value of agar concentration at 3.41 % which remained almost steady 

just below 4 % and decrease slightly in higher value of 4.59 %. Compared to the higher value 

of agar concentration, the lower value gave significantly higher ethanol (Figure 5.5. b). At 

lower value of yeast cell concentration of 6.81 %, the ethanol yield was low, increases to its 

maximum value at around 8% and then decreases at higher value of 9.19 %. The lowest value 
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of cell concentration taken gave slightly higher ethanol yield than the highest value (Figure 

5.5. c). 

a  b  

c  d  

e   f  
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Fig. 5.6. Three dimensional and linear interaction plots for (a and b) A – fermentation time and B- agar 

concentration , (c and d) A – fermentation time and C – cell concentration (e and f) and B – agar concentration 

and C – cell concentration (Red dots within the response curves represent experimental design points obtained 

during the CCD-RSM while contour lines show prediction outputs calculated by the mathematical model.) 

 

The three dimensional plots of two factor interaction among the independent variables with 

respect to ethanol yield gave variety of interpretations (Figure 5.6.). At constant cell 

concentration of 8%, the first interaction curve (Figure 5.6. a, b) shows that at 3.405 % agar 

concentration, the ethanol yield gives less value at 18.81 h and 21.19 h fermentation time 

with a peak in between at 20 h. Similar pattern can be seen when agar concentration of 4.595 

% was used at same cell concentration. The overall ethanol content was more with lower 

value of agar concentration of 3.405 % than 4.595 % and 20 h fermentation time. The second 

interaction curve (Figure 5.6. c, d) keeps agar concentration constant at 4%. At 6.811 % cell 

concentration, the ethanol content was less at 18.81 h that increases slowly near 20 h and 

finally falls again at 21.19 h of fermentation time. Whereas the higher value of cell 

concentration at 9.189 %, the ethanol was less at lower value of fermentation time 18.81 h, 

increase around 20 h and then takes a slight dip at 21.19 h. So, the lower value of cell 

concentration gave better ethanol yield than higher value starting at initial to 20 h 

fermentation time. At the end of the curve, the higher value of cell concentration gave 

slightly better ethanol yield than lower one. In the third part of the curve (Figure 5.6. e, f), 

fermentation time was kept at a constant value of 20 h. The cell concentration of 6.811 % 

gave less yield at 3.41 % agar concentration, increases in a flat manner around 4% and again 

slightly decrease at 4.59 %. When cell concentration was 9.189 %, at 3.41% agar 

concentration, the ethanol content was more which took a slight peak around 3.7% and then 

decreases gradually to a much less value at 4.59 %.Therefore, initially the ethanol yield was 
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less at lower value of cell concentration compare to higher values but near the end of the 

curve, the ethanol content was much greater at lower value than the higher value of cell 

concentration. From these graphs we can say that the interaction of factors fermentation time- 

cell concentration (AC) and agar concentration- cell concentration (BC) significanty affect 

overall ethanol yield. 

 

5.3.5. Confirmation of the predicted model 

 

The study of the plots gives the best predicted values of fermentation by immobilized yeast at 

20.05 h fermentation time, 3.41 % agar concentration and 8.07 % cell concentration ( approx. 

27.87 x107 CFU/bead) having an ethanol yield of 2.123 g/100 ml with desirability function 

value of 0.95which is indicative of good significance of the obtained result. Under these 

conditions, repeating experiments were conducted in replicates. The experimental result was 

around 2.056 g/100 ml which was matching with the predicted value of 2.123 g /100 ml of 

ethanol content. The experimental value was96.8%of the predicted value of the modified 

quadratic model (Table 5.6.). So, the observed value was in conformation with the predicted 

value that confirms to the acceptability of the model. 

 

Table 5.5: Validation data for the predicted model for fermenting bagasse aqueous extract 

using immobilized saccharomyces cerevisiae MTCC 180 

 

Response Software prediction value 

(g /100 ml) 

Validity experiment value 

(g /100 ml) 

95% CI low 95% CI high 

Ethanol yield  2.123 2.056 2.09 2.16 
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5.4. CONCLUSION 

 

Immobilization of microbial cell brings about certain advantages in fermentation process over 

free cell. Yeast immobilization is a very popular practice among brewers who tries to yield 

ethanol by reutilizing cells and want to recover the final product without any hassle. The 

yeast cells could be successfully immobilized in agar matrices having even distribution as 

revealed in scanning electron microscopic view. The bagasse water extract, which was used 

as the fermentation media, was optimized and supplemented for ethanol production, and 

fermented using immobilized S. cerevisiae MTCC 180 gave successful results. When the 

immobilization factors were optimized using Design expert® software, the ethanol yield of 

2.123gm/100 ml at the rate of 1.05 g/L/h was obtained. The model validation of 

immobilization parameters gave maximum ethanol yield of 2.056 g/100 ml at the rate of 

1.025 g/L/h achieved at 20.05 h fermentation time, 3.41 % agar concentration and 8.07 % cell 

concentration. The study reveals that the factors fermentation time, agar concentration and 

cell concentration sucrose significantly affected ethanol yield, and the modified quadratic 

model suggested by the software was adequate (p < 0.0001), as the R2, adjusted R2 and CV 

values showed acceptability and accuracy of the model. 
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SUMMARY 

 

This study attempts to investigate the potential of aqueous extract of sugarcane bagasse using 

a secondary fermenting strain Saccharomyces cerevisiae MTCC 180. Some types of food 

wastes which is generated after any processing step was collected. They include- Potato wash 

water that is obtained after washing the peeled potatoes during chips manufacturing, spent tea 

that is obtained after making tea and bagasse which is obtained after expression of sugarcane 

juice. All these wastes have a very high BOD value and usually thrown or dumped into the 

environment that may cause serious environmental pollution. These wastes were reutilized to 

obtain substrate for fermentation of bioethanol. The potato wash water that was soaked for at 

least 15 minutes approximately, was treated in two different ways: in one method it was 

subjected to hydrolysis at 1% v/v of concentrated hydrochloric acid autoclaving at 121 ºC, 15 

psi pressure for 15 minutes and in the other method hydrolysis was performed using 5% v/v 

of concentrated hydrochloric acid at 90-100 ºC for 60 minutes. The spent tea (10 g) was water 

extracted (150 ml) taking each extract after 2-5 minutes up to 5th extraction and mixing the 

extracts together one at a time to get the fermentation broth. Bagasse was taken (5g) and cut 

into small pieces of approximately 1 inch length and extracted using water (200ml) boiling at 

95-100 ºC. The three different potato wash water samples; Untreated, treated and autoclaved 

and hydrolysed were taken. Spent tea liquor consisted of samples; 1st extraction, 2nd 

extraction, 3rd extraction, 4th extraction, 5th extraction, (1st+2nd) extraction, (1st+2nd+ 3rd) 

extraction, (1st=2nd +3rd+4th) extraction and (1st+ 2nd+ 3rd+4th+ 5th) extraction. Bagasse 

aqueous extract includes all the 12 extracts starting from 5 minutes to 60 minutes at an 

interval of 5 minutes each. All these extract were prepared and tested for reducing sugar 

using Dinitrosalicylic acid method with respect to standard glucose solution. This helped us 

to get an estimate of the amount of fermentable monosaccharide present that may be useful in 
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the fermentation initiation.  Then the selection was made among the three waste variants 

based on higher values of reducing sugar and it was found that the hydrolysed potato wash 

water, first extraction of spent tea and 30 minutes extraction of bagasse scored higher than the 

others. The final substrate selection was made based on fermentation of these substrate using 

Saccharomyces cerevisiae MTCC 180 to get ethanol at an interval of 24 h up to 72 h. Ethanol 

content was estimated by titration using dichromate technique and 30 minutes aqueous 

extract of bagasse gave the highest value of ethanol. Therefore, this substrate was used for 

further experiments in fermentation. 

Bagasse itself can be treated with various pre-treatments before fermentation which may 

increase ethanol yield. Estimation of our substrate here revealed that it contains very 

minimum amount of approximately 0.0032g/L of furfural which may increase if any acidic or 

alkaline treatment was performed. For secondary utilization of bagasse, it needs to be dried 

and stored. Drying operation on the bagasse was performed using tray dryer which was 

preheated and brought to a temperature of 70°C.  The drying operation was carried out for 

150 minutes to get dry bagasse. 5 g dried bagasse was extracted in water and pH, total soluble 

solid and reducing sugar were analysed. Alcohol estimation was also done using dried 

bagasse water extract. Results showed almost similar values for both dried and normal 

bagasse in terms of the above mentioned quality parameters. So, drying was found to have 

insignificant effect on fermentation of bagasse aqueous extract. 

Optimization of fermentation conditions and nutritional supplementation was done on the 

substrate using statistical methods. The fermentation conditions like pH, temperature, time, 

inoculum size and inoculum age were optimized at first using one factor at a time and then 

time and temperature were analysed using response surface methodology where the upper 

and lower limits were selected based on one factor optimized values. The best conditions for 

fermentation was found to be at pH 4, fermentation time 22.60 h, temperature 30.20°C,  
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inoculum size 6% (v/v) and inoculum age of 48 which gave 2.5 times more yield than un-

optimized substrate having an absolute residual error of 6.14 %. The nutritional conditions 

like carbon, nitrogen and mineral sources were selected and optimized. At first they were 

selected and optimized using one factor at a time. The values from OFAT were used to select 

the upper and lower limit in response surface method to consider the all possible 

combinations for the experiments. Sucrose, ammonium sulphate and potassium chloride was 

selected that gave better ethanol yield at 4.06%, 0.5 % and 0.11 mg/ml respectively. The non-

supplemented medium, even under optimized fermentation conditions, gave 7.5 times lesser 

yield. 

The fermentation was further carried out using immobilized Saccharomyces cerevisiae 

MTCC 180 cells in 0.9% sodium chloride mixed agar matrix. On mixing and solidification, 

they were cut into pieces of small cubes and preserved in 0.1 (M) phosphate buffer solution 

of pH 5.5 in refrigerated conditions for 1 hour. For reusing the immobilized culture, it was 

taken out of refrigeration to achieve room temperature and washed with cold sterile water 2-3 

times before they were used as inoculum for fermentation. The conditions of immobilization 

were optimized varying fermentation time, agar concentration, gel formation time and cell 

concentration with eth help of response surface methodology. The model validation of 

immobilization parameters gave maximum ethanol yield of 2.056 g/100 ml at the rate of 

1.025 g/L/h achieved at 20.05 h fermentation time, 3.41 % agar concentration and 8.07 % cell 

concentration. 
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CONCLUSION  

 

The above study was based on evaluation of the potential of aqueous extract of sugarcane 

bagasse using a unconventional strain Saccharomyces cerevisiae MTCC 180. Food wastes 

like Potato wash water, spent tea and Bagasse were collected and sample variations were 

made. Various possible variations of extracts from these wastes were prepared and tested for 

reducing sugar and ethanol content. The test reveal that 30 minutes aqueous extract of 

bagasse gave the highest value of reducing sugar and ethanol. Therefore, this substrate was 

used for further experiments in fermentation. 

The FTIR analysis of the aqueous extract of bagasse reveals majority of presence of 

disaccharides, very small amount of other polysaccharides, absorbed water and other 

impurities. Tray drying of the bagasse to get dry bagasse was performed to check its capacity 

to produce ethanol and found that it was not significantly different from all aspects with 

respect to wet bagasse. So, this insignificant unit operation was not included for further 

experiments. 

Optimization of fermentation conditions was done on the substrate using statistical methods. 

The best conditions for fermentation was found to be at pH 4, fermentation time 22.60 h, 

temperature 30.20°C, inoculum size 6% (v/v) and inoculum age of 48 which gave having an 

ethanol yield of 0.342 g /100 ml produced at the rate of 0.142 g/L/h. It generated2.5 times 

more yield than un-optimized substrate having an absolute residual error of 6.14 %. The 

nutritional conditions like carbon, nitrogen and mineral sources were selected and optimized. 

Sucrose, ammonium sulphate and potassium chloride was selected that gave better ethanol 

yield at 4.06%, 0.5 % and 0.11 mg/ml respectively of 2.345 g/100 ml produced at the rate of 

1.037 g/l/h. The non-supplemented medium, even under optimized fermentation conditions, 

gave 7.5 times lesser yield. 
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The fermentation was further carried out using immobilized Saccharomyces cerevisiae 

MTCC 180 cells in 0.9% sodium chloride mixed agar matrix. The conditions of 

immobilization were optimized varying fermentation time, agar concentration, gel formation 

time and cell concentration which gave maximum ethanol yield of 2.056 g/100 ml at the rate 

of 1.025 g/L/h achieved at 20.05 h fermentation time, 3.41 % agar concentration and 8.07 % 

cell concentration. 

 

FUTURE PROSPECTS 

 

The investigation presented here is clearly problem problem-specific approach to mitigate 

some of the environmental pollutants produced daily as agriculture or food processing waste. 

An insightful conclusion of this is that an unconventional strain like Saccharomyces 

cerevisiae MTCC 180 can be utilized for fermenting a novel substrate like an aqueous extract 

of bagasse without any physical or chemical pre-treatment. The research can further be 

extended with a pilot scale study to check the yield at scale-up conditions. Different types of 

matrices can be tried other than agar to check their stability and compatibility for cell 

immobilization. The metabolic study of the microorganism and immobilized cell reuse can be 

studied in more detail. The bioethanol produced can further be studied in terms of its different 

parameters and efficiency as a biofuel in crude as well as blended form. Other potential 

applications of generated bioethanol can also be investigated. Embracing technologies such 

as this can be a sustainable approach towards effective waste utilization serving the objective 

of narrowing down the pollution burden on Earth, and making it a better habitat for our 

descendants. 
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LIST OF CHEMICALS 

 

Name of the Chemical Supplier company 

Agar SRL Chemicals. 

Ammonium chloride SRL Chemicals. 

Ammonium sulphate SRL Chemicals. 

Calcium chloride SRL Chemicals. 

Dextrose SRL Chemicals. 

Dinitrosalicylic acid reagent (DNS) HiMedia Laboratories Pvt.Ltd. 

Disodium hydrogen phosphate Merck 

Ethanol HiMedia Laboratories Pvt.Ltd. 

Ferrous sulphate SRL Chemicals. 

Fructose SRL Chemicals. 

Hydrochloric acid Qualigens Fine Chemicals Pvt. Ltd. 

Magnesium sulphate SRL Chemicals. 

Peptone SRL Chemicals. 

Potassium chloride SRL Chemicals. 

Potassium dichromate SRL Chemicals. 

Potassium di-hydrogen phosphate Merck 

Potassium iodide SRL Chemicals. 

Rectified spirit Bengal Chemicals & Pharmaceuticals Limited. 

Sodium chloride SRL Chemicals. 

Sodium hydroxide SRL Chemicals. 

Sodium thiosulphate SRL Chemicals. 

Starch soluble SRL Chemicals. 

Sucrose HiMedia Laboratories Pvt.Ltd. 

Sulphuric acid Merck 
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Tween 20 BRM Chemicals. 

Urea SRL Chemicals. 

Yeast extract SRL Chemicals. 

 

 

LIST OF INSTRUMENTS 

 

Name of the Instrument Company /Model  

Autoclave M/s Instrumentation India, Kolkata. 

BOD Cooling Incubator Shaker M/s Instrumentation India, Kolkata. 

Cooling centrifuge Remi, 412 LAG. 

Digital colony counter Optics Technology Pvt. Ltd. 

Digital pH meter Systronics, μ pH system 361. 

Fourier-transform infrared spectroscopy (FTIR) Thermo Fisher Scientific, NICOLET 6700 FT-IR  

Halogen Moisture Balance Wenser, HMB50H. 

Horizontal Tray dryer M/s Instrumentation India, Kolkata. 

Hot air oven  M/s Instrumentation India, Kolkata. 

Incubator Shaker  M/s Instrumentation India, Kolkata. 

Laminar air flow chamber M/s Instrumentation India, Kolkata. 

Refractometer ERMA RBH 62 

Refrigerator Whirlpool, DC 200 E-2019. 

Rough weighing balance Wenser, TTB 20 HH. 

Scanning Electron Microscope Merlin, Zeiss 6105 

Sensitive weighing balance Wenser, PGB 220. 

Temperature controlled hot plate Ajay Pvt. Ltd. 

Temperature Controlled Water bath M/s Instrumentation India, Kolkata. 

UV-Vis Spectrophotometer Shimadzu, UV-1800. 
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LIST OF SOFTWARE 

 

Name of the Software Company /Version 

One way ANOVA Microsoft office Excel, 2013 

Design-Expert Stat-Ease, Version 7.0.0, 2021. 

Origin-Pro  Origin-Pro 2022 b 
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