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Abstract

Biomedical signal compression is a challenging task as the information inside a biomedical signal need
to be preserved during signal compression. This research work presents a few optimization processes

for image and video signal compression.

The image compression technique presented in this article is based on lossy vector quantization process.
The codebook of the vector quantization algorithm is optimized using Jaya algorithm. A quantized
residue image has been added with the compressed signal to preserve the information inside the
biomedical signal. The derived optical disk and retinal blood vessel from the original image as well as
the compressed image are compared in terms of correlation, specificity and sensitivity to determine the
diagnostic essence preservation. The retention of diagnostic essence is seriously improved after

combining the residue image with the compressed signal.

The motion vector estimation process is the computationally expensive process in video coding. As a
result, this work proposes optimizing the operational parameters of existing motion estimating
algorithms in order to lower the computing complexity of the algorithms. Three different processes
based on genetic algorithm, cuckoo search and fuzzy inference to modify the operational parameters of
test zone search is presented in this article. The article introduces a new statistic, Motion Factor, which
is an approximate assessment of motion in a coding unit and is used to optimise operating parameters
of test zone search. The optimization processes significantly reduced the computation cost of test zone

search.

Other meta heuristic algorithms such as the cuckoo search and ant weight lifting algorithm are modified
and used in new optimised block matching algorithms. The modifications which include the nearest
neighbour interpolation for fitness approximation, adaptive termination and initial population selection
from deterministic distribution, are designed to lower the computation cost of these algorithms. The
performance of these algorithms is compared with the state-of-the-art Jaya algorithm-based motion

estimation process.

Keywords: Biomedical signal compression, Nature inspired algorithms, vector quantization,

motion estimation, block matching algorithm, test zone search.
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Chapter 1

Introduction

111111



“As a matter of fact, when compression technology came along, we thought the
future in 1996 was about voice. We got it wrong. It is about voice video and data

and that is what we have today on these cell phones.”

Compression is the heart of modern digital communication system. In a time when the data generation
is increasing exponentially every year, compression helps to manage the data efficiently. Any real time
communication is possible because of advancement in compression technology. Compression enabling
more faster and reliable communication across network by reducing the bandwidth required to transmit
the information. Compression algorithms have become essential tools for every type of signals such as
audio, text documents, image as well as videos, enhancing the user experience, enabling seamless
multimedia streaming, and facilitating the efficient storage and retrieval of digital content. In a nutshell,
compression is the driving force behind the digital revolution, enabling us to harness the vast potential

of digital signals.

Compression can be thought of as a mapping process in which the output of an information source is
mapped to a series of symbols. Also, compression, on the other hand, can be considered a pattern
recognition problem in which repeating patterns within a long stream of information are identified and
replaced with smaller symbols. Thus, compression is essential for removing redundancy from a signal

so that it may be represented more efficiently.

The compression plays an important role in digital revolution. However, one should acknowledge the
limits of compression. Shannon's source coding theorem [1] highlights the basic constraint of
compression. The theorem implies that the entropy of the information source is the highest amount of
compression attainable for any signal without losing any information from the signal. Understanding
the limitations imposed by Shannon’s source coding theorem is crucial for the people working with
compressed data. Ultimately, compression serves as a powerful tool for managing the vast amounts of
digital data everybody encounters in today's interconnected world. While it offers remarkable benefits,

it has certain drawbacks. Table 1.1 lists the advantages and drawbacks of signal compression.

Table 1.1: Advantages and drawbacks of signal compression

Advantages

Drawbacks

1) Compression is a great tool for lowering the
demand for storage space.
2) Signal compression reduces the load on
communication channels.
3) Compressed signals have faster read and write

times than uncompressed signals.

1) The compression process is very
computationally expensive.
2) The compression & decompression processes

can have very high space complexity at times.
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1.1 Rationale for signal compression's potential

The correlational, statistical, and perceptual characteristics of a signal make signal compression
possible. The uncompressed signal uses the same amount of memory to represent every symbol. This
statistical redundancy can be avoided by allocating memory bits of varying lengths to represent various
symbols according to their frequency in the signal. Signal compression techniques such as Huffman

coding [2], arithmetic coding [3], and run-length coding take advantage of this statistical redundancy.

Another method for achieving signal compression is to exploit the correlation between nearby signal
samples. Correlation can be classified into spatial correlation and temporal correlation. Simple one-
dimensional signals like text, biomedical one-dimensional signals like the electrocardiograph (ECG)
and electroencephalograph (EEG), as well as multimedia one-dimensional signals like music, speech,
etc., and two-dimensional signals like images, have only spatial correlation. Three-dimensional
multimedia signals, such as video, however, have both spatial and temporal correlation. Intra-video
coding reduces spatial correlation within a video frame, whereas motion estimation utilizes temporal

correlation to produce video compression.

A signal's perceptual redundancy refers to the quantity of irrelevant data in the signal that the human
brain cannot process. The removal of perceptually redundant material does not affect the viewer's
perception of the signal. Joint picture expert group (JPEG) image compression [4] schemes exploit

perceptual redundancy to achieve compression.
1.2 Classification of compression algorithms

Compression techniques are classified into two groups based on the amount of information lost during
the process: lossy compression and lossless compression (as shown in Figure 1). The lossy compression
technique will cause some information to be lost during the compression process. The loss of detail
during lossy compression is not perceptible to human senses, and therefore the loss of information is
acceptable for many applications such as speech compression, image compression, etc. The most
common lossy compression technique is to transform a signal from the time or spatial domain to the
frequency domain and use less precise data to store the transformed coefficient. Eventually, limiting the
precision of the transformed coefficient led to information loss. Discrete cosine transforms (DCT) or
discrete wavelet transforms (DWT) are used to convert a signal from the time or spatial domain to the
frequency domain. Other lossy compression techniques use fractal coding or vector quantization for

compression.

For certain kinds of applications, every bit of information is necessary to preserve. The lossless
compression technique employs entropy coding or decorrelation to reduce the size of a signal without
losing any information. Shannon coding's restriction on the minimum length of a coded word is

followed by entropy coding. Huffman coding, arithmetic coding, etc. are the most popular examples of

3|Page



entropy coding. Another popular lossless compression technique is the reduction of autocorrelation
inside a signal. Prediction-based compression techniques are a prime example of such compression

techniques. The differences between lossy and lossless compression are listed in Table 1.2.

J

Transform Discrete cosine transform

Based Coding Discrete wavelet transform
Dictionary Fractal coding
Classification based coding Vector Quantization

of
compression
schemes

e )

Reduction of
autocorrelation

Prediction based compression

Lossless

~\

Run Length Code

Entropy Huffman code
Coding Arithmetic code

Variable length coding

\ J/

Figure 1 Classification of lossy and lossless compression

Table 1.2: Differences between lossy and lossless compression

Lossy compression

Lossless compression

1) Lossy compression will lose some information
during compression.

2) Lossy compression can achieve higher
compression ratio.

3) Lossy compression is an irreversible process.
4) Lossy compression includes transform-based
coding such as discrete cosine transform; discrete
wavelet transforms etc. and dictionary-based
coding such as fractal coding, vector quantization

etc.

1) Lossless compression will preserve every
information during compression.

2) Lossless compression has a higher
compression ratio limit.

3) Lossless compression is a reversible process.
4) Lossless compression includes entropy coding
such as Huffman coding, arithmetic coding, run
length code, variable length code etc. and the
decorrelation coding such as prediction-based

compression.

1.3 Selection of appropriate compression scheme

Compression cannot be uniform for different types of signals and different types of applications that
employ those signals. Various compression schemes are suitable for various applications. The
compression schemes vary based on multiple factors. The selection of an appropriate compression
strategy undoubtedly improves the performance of a system. The following are the most important

criteria for selecting an appropriate compression method for an application:

A) Signal dimensionality: The dimension of the signal used by the system is one of the most

important aspects to consider when selecting a compression strategy. For example, systems that
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B)

0

D)

E)

F)

use a three-dimensional signal, such as a video signal, must select a compression strategy that
reduces both spatial and temporal correlation.

Loss of information: There are two forms of signal compression. Few compression schemes
abandon unnecessary information to achieve compression. These schemes are known as “lossy
compression”. A lossy compression scheme is a JPEG compression scheme that removes
perceptually redundant data from the signal. Lossy compression is an irreversible technique
that renders it impossible to reassemble the original signal. On the other hand, lossless
compression preserves all the signal's information. For signals like biomedical signals, where
every piece of information is crucial, this method is useful.

Operational complexity of an algorithm: The selection of an algorithm to compress a signal
depends on the operational complexity of the algorithm. The choice of an algorithm to compress
a signal is influenced by the algorithm's operational complexity. For instance, an operationally
simple algorithm with a decent amount of compression will be given preference over a complex
algorithm with a superior level of compression in an application where real-time signal
compression is crucial.

Cost of implementation: The way the algorithm is implemented is a key selection factor for
signal compression algorithms. A hardware-based application will use simple compression
algorithms, which are less expensive to implement in hardware. Complex algorithms are
implemented through software, as hardware implementation would be very expensive.

Robust or resilient: The robustness and resilience of algorithms are significant considerations
when choosing a compression technique. A compression system that transmits the compressed
signal across a network must be resilient to transmission errors. However, error resilience
reduces coding efficiency. The technique, however, must be robust when the compressed signal
is stored locally rather than transmitted across a network.

Symmetry between encoding and decoding: Video conferencing, for example, necessitates
constant video encoding and decoding. As a result, this system has encoding and decoding
symmetry. In such applications, the operational complexity is shared equally by the encoder
and decoder. However, some applications, such as video databases and picture databases,
feature asymmetry between encoding and decoding, where encoding is done once but continual
decoding is required. As a result, the operational complexity of such systems is greatly

influenced by the complexity of the decoder.

1.4 Biomedical signals

Biomedical signals are a subset of signals that are utilized to extract information about a biological
entity [5]. According to Chang & Maura [6], “Biological signals are observations of physiological
activities of organisms.” According to the Encyclopedia of Healthcare Information Systems [7],

biomedical signals are those that “refer to signals that carry useful information for probing, exploring,
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and understanding the behavior of biomedical systems under investigation.” From the preceding
definitions of biomedical signals, it can be concluded that any form of the electrical, mechanical,
chemical, auditory, magnetic, or optical signal that describes any physiological condition of a living
species is a biomedical signal. ECG, EEG, and other bioelectrical signals are examples of one-
dimensional biomedical signals. Biomedical imaging techniques such as X-rays, ultrasound images,
magnetic resonance imaging, and others use non-invasive imaging techniques to visualize a living
being's internal physiological status. These are biomedical signals in two dimensions. A few bioimaging
processes, such as echocardiography and angiography, collect image sequences or videos to investigate
the state of interior organs. These signals are an example of three-dimensional biomedical signals. Even
ordinary video sequences from a video conference between a patient and a doctor during tele-treatment
can be considered three-dimensional biomedical signals since medical experts extract various vital
health information from the patient's visual appearance and activity in the video sequence. Furthermore,
several research articles used regular video sequences to detect key physiological and psychological
states of the patient, such as pain [8,9], depression [10,11], etc., and assist medical practitioners
throughout the telemedicine procedure. As a result, normal video sequences serve as a vital information
source for physiological and psychological conditions during the telemedicine process, converting

normal video sequences into a legitimate three-dimensional biomedical signal.
1.5 Motivation for biomedical signal compression in telemedicine applications

Biomedical signal compression in telemedicine applications can be classified into two groups. One will
be limited to the compression of regular video sequences. Another field of investigation will be the
compression method for specialized biomedical signals like ECG, EEG, x-ray images, ultrasound

imaging, and so on.

The compression of regular video sequences during the video conference between patients and medical
professionals is very much necessary, as the compression will decongest the communication network.
Also, the fast read and write times of compressed signals are a necessity in real-time communication
systems. Normal video compression also helps to maintain and organize a large video database in a
telemedicine system. This enormous database, together with other clinical metrics, can be used as
empirical data by several research studies to diagnose various critical physiological and psychological

states of patients [8 -11].

The use of biomedical signals such as ECG, EEG, etc., and biomedical imaging systems such as
computed tomography (CT), magnetic resonance imaging (MRI), etc. in modern medical diagnosis are
generating the sheer amount of data every day. Also, the improvement in technology is contributing to
the exponential increase in the volume of digital medical data. For example, in 1990, a CT scan
consisted of only 25 slices, with each slice's resolution captured at 16 bits per sample and having

512x512 resolution. By the end of the decade, the number of slices had risen to 80. Today's CT scan is
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made up of 600 slices, each with a resolution of 768x768. In thirty years, the memory required to store
the output of a single CT scan went from 13MB to 700MB [12]. In another example, the size of a single-
channel ECG signal with a sampling frequency of 180 Hz for 24 hours is 23MB. The size increases to
279MB when the number of channel increase to twelve. Figure 2 illustrates the annual increase in the

amount of memory needed to store the output of a CT scan.

These are just a few instances of how raw biomedical signals can consume a lot of bandwidth throughout
the telemedicine process. However, the public network cannot commit such large amounts of bandwidth
to a single application. As a result, compression is required for such vast amounts of data. The ethical
and legal reason necessitates that biomedical signal compression must be lossless as biomedical data
contains critical information and lossless compression can rebuild the original signal at the receiver.
But lossless compression has limitations as mentioned by the Shannon source coding theorem.
Sometimes some compression schemes for biomedical signals accept some degree of information less.
However, the compression process shouldn’t change the diagnostic essence of the signal [13]. Also, the

output of lossy compression can be utilized for study and research.

Year wise increase in the required memory to store a CT
scan output.
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Figure 2 Year wise increase in the required memory to store a CT scan output

1.6 Problem Statement

Compression is important to store or transmit a signal. Biomedical signal compression methods strive
to retain as much information as possible inside the signal. But there are many challenges to it. In the
following chapters, many well-known signal, image, and video compression algorithms that handle
these difficulties within an optimization framework will be thoroughly studied. Computation of rate-

distortion performance caused as an effect of compression is also discussed in the chapters.
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There are different types of signal and image compression algorithms namely predictive coding,
transform coding, vector quantization, etc. This literature has only used the vector quantization method,
where the codebook and the index map replaced the original signal. Two codebook optimization
algorithms that reduced distortion between the compressed and original signals have been proposed in

this literature.

Several techniques in video compression, including the block matching algorithm, optical flow, and pel
recursive algorithm, can lessen the temporal correlation between subsequent frames. However, only
block-matching algorithms, which estimate the movement of blocks in successive frames to reduce
temporal correlation, have been considered in this literature. Several new algorithms have been
proposed to optimize the block-matching process. Furthermore, new algorithms are also proposed to
optimize the operational parameter of the existing block-matching process, reducing the computation

complexity of the existing algorithms.
1.7 Thesis organization
The following is how the thesis is structured:

Chapter 1 discussed the need for biomedical signal compression. The fundamentals of video, image,
and signal compression techniques were reviewed in Chapter 2. Here, past studies on these subjects
were also explored and different statistical measures used to evaluate the performance of the algorithms
were discussed. Chapter 3 will introduce a new codebook optimization algorithm for image
compression. The performance of the proposed algorithm is also discussed at the end of chapter 3.
Chapter 4 discuss the effect of operational parameter optimization of block matching algorithms.
Chapter 5 proposed new optimized block-matching algorithms for motion estimation. The limitation
and achievements of the new algorithms are also discussed at the end of this chapter. Chapter 6 provides

the concluding remarks of this study. The future scope of the research article is outlined at the end.
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Chapter 2:

Fundamentals of Compression

and Literature Review
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Everyday human being generates quintillion bytes of data [14]. Storing and transmitting such huge
amounts of data is a challenging task. Therefore, compression is the most important tool for dealing
with such difficulties. Compression algorithms were designed to offer the best rate-distortion

performance at the fastest feasible speed.

Different dimensional signals demand a different compression strategy. For example, any video
sequence features spatial redundancy produced by the correlation of pixels inside a frame, as well as
temporal redundancy caused by the movement of an item in successive frames. Image, on the other
hand, cannot have temporal redundancy. As a result, the compression algorithms for an image and a
video differ. The upcoming sections of this chapter will go through the fundamentals of various
compression algorithms for signals of various dimensions. In addition, the discussion will include a

brief review of previous studies on compression and the statistical measures used in the algorithms.
2.1 Fundamentals of Video Compression

Video compression is the most important part of any video coding process. The temporal correlation
between successive frames and the spatial correlation inside a frame was exploited to achieve video
compression. Standards for video coding divide the entire frame into non-overlapping coding units.
These coding units are used to process each frame. Each coding unit is encoded in intra-mode or inter-
mode. Intra-mode encoding removes the spatial correlation and inter-coding reduces the temporal
correlation. The maximum size of the coding unit varies with the video coding standards. The H.264
video coding standard [15] employed a 16x16 coding unit known as a macroblock. In the H.265 video
coding standard [16], the maximum size of a coding unit was 64x64. The H.266 video coding standard
[17] raises the maximum coding unit size from 64x64 to 128x128. Both the H.265 and H.266 video
coding standards use a tree structure to segment the frame, allowing for additional division of the coding
units. In both inter-mode and intra-mode encoding, a projected coding unit was built using samples of
previously encoded frames that have the best correlation with the current coding unit. Intra-mode
encoding used samples from the same frame to produce a predicted coding unit, whereas inter-mode
encoding used samples from previously encoded frames to form a predicted coding unit. The difference
between the predicted and actual coding units is transformed and quantized. The quantized transformed
coefficients from the previous stage, coupled with the projected coding unit position, are then encoded
with entropy coding and broadcast via a network. The projected unit's position is decoded by the
decoder. In addition, the decoder decodes the coefficients, which are then inverse quantized, and inverse
transformed to recover the difference coding unit. At the decoder, the difference coding unit is added

to the predicted unit to get back the current coding unit.

In video compression, intra-mode encoding deals with a single frame at a time. As a result, it is identical
to the standard image compression process, which will be covered in detail in the next sections. The

most computationally challenging task in a video compression process is inter-mode encoding. Figure
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3 shows the block diagram of inter mode encoding in video compression. The search for a predicted
unit that has the best correlation with the current coding unit in inter-mode encoding is known as motion
estimation as well as the process to add up the difference coding unit with the predicted unit in inter-
mode encoding at the decoder is known as motion compensation. Together the inter-mode encoding is
also termed motion estimation and motion compensation encoding. The movement of the objects in
successive frames in the video will create a temporal correlation. Motion estimation reduces the
correlation by estimating the movement of coding units. Motion compensation lowers the inaccuracy

caused by inaccurate motion estimation.

Present | Motion Decoded
Frame ! Compensation | Encoder = Decoder Frame
A A
Motion
Vector
Dw‘.df fhe frame Calculate the motion Prediceted
> 1o non- vector for the block. Image
overlapping 7
\
blocks Motion
Estimation

Search for best match
Pick a search area in_* betwen block in present
reference frame frame and blocks in

search area.

—[ Reference Frame I

Figure 3 Block diagram of inter mode encoding in video compression

A

2.1.1 Fundamentals of Block Matching Algorithm

The motion estimation process is carried out through block-matching algorithm which searched the
predicted unit at the search area of the reference frame. The correlation between the predicted unit and
the current coding unit is measured by mean square error (MSE) [18] or mean absolute difference
(MAD) [19] or sum of the absolute difference (SAD) [19]. The search region in the reference frame
was centered at the same position as the present frame coding unit and the search area's border was
determined at a specified distance on all sides from the center (as shown in Figure 4). The difference
between the position of the predicted unit and the position of the current coding unit is known as the

motion vector. The static coding units (coding units with no motion) has zero motion vector.
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1
MSE = FZ Z currentblock(i, j) — predictedblock(i, j)]? (Eq.1)
i=1j=1
LI
MAD = mz Z |currentblock(i,j) — predictedblock(i, )| (Eq. 2)
i=1j=1
H w
AD = Z z |currentblock(i,j) — predictedblock(i, )| (Eq.3)
i=1j=1

H and W are the height and width of the coding units. currentblock(i,j) represents the luminance value
at the (ij) position in the current coding unit of the present frame. predictedblock(i,j) represents the

luminance value at the (i,j) position in the predicted unit of the reference frame.

Current Coding Unit

_______ SIS Current Frame

Reference Frame

Figure 4 Position of CU in current frame and search area in reference frame for full search algorithm

The position of the frame inside a video determines the reference frame selection. A video is made up
of meaningful groups of frames. Every group's initial frame marks the start of a sequence and there is
no previous instance to which it can refer for motion prediction. Therefore, the first frame was always
encoded exclusively in the intra-mode. This is referred to as an I-frame. Few frames solely use the
preceding reference frame to estimate motion. These frames are referred to as P-frames. P-frames are
placed at regular intervals throughout a group of frames. The first P-frame in the sequence uses the I-
frame as a reference frame. Others refer to the prior P-frame. The remaining frames inside a group of
frames are using two reference frames for motion estimation. These frames are known as B-frames and

are positioned between I-frame and P-frames. Figure 5 illustrate the frame structure inside the video.

Exhaustive Search (ES) or full search [20] produces the best results of any block matching method

because it compares every prediction unit in the reference frame's search region with the current coding
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unit in the current frame for the best correlation. However, it is also the most computationally expensive
of all block-matching techniques. Every block-matching algorithm measures the improvement in

execution speed by referencing the execution speed of the ES method.

[-Frame
B-
Frame
B-
Frame
P-
Frame
Time B-

Frame

Frame

Frame

Figure 5 Frame structure inside the video
2.1.2 Literature review
This section describes a brief review of different research article on block matching algorithm.
2.1.2.1 Literature review on block matching algorithm

Several fixed pattern-based block-matching algorithms were developed such as three-step search [21],
four-step search [22], diamond search [23], and so on to reduce the computation task of the ES. All the
fixed pattern-based fast block matching algorithms were developed with the assumption that the
prediction error minimizes as the search moves closer to the global minimum. But Chow et al [24]
proved that fixed pattern-based fast block matching algorithms can converge in local minima only.
Several prediction-based block-matching algorithms [25,26,27,28] were able to partially overcome the
drawback of fixed pattern-based block-matching algorithms. These algorithms used different initial
motion vector predictors to shift the initial search point closer toward the global minima. Median-based
motion vector predictors [29] and advanced motion vector predictors [30] are quite popular motion
vector predictors. But the increasing resolution of video reduced the efficiency of prediction-based
block-matching algorithms. Also, the initial motion vector predictor can lead to a false initial search

center sometimes. This is due to the movement of tiny elements in successive frames [31].
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2.1.2.2 Literature review on optimization in block matching algorithm

Population-based evolutionary algorithms are ideal for discovering global minima. However,
evolutionary algorithms have a slow convergence rate. Furthermore, in optimization problems with a
small search region, the evolutionary algorithm converged prematurely. Therefore, the original
evolutionary algorithms are not directly applicable to the motion vector estimation problem. To adapt
the evolutionary algorithm for motion estimation, researchers recommended certain changes to the

existing popular evolutionary algorithms.

In genetic motion search [24] Chow et al replace the uniform distribution of the initial population in the
genetic algorithm with biased distribution towards the central region of the search space. The biased
distribution increased the convergence speed of the algorithm as most of the motion vectors were
centered around the search center [32]. The initial random population generation in the genetic
algorithm was replaced by a deterministic population generation process by Lin et al in light genetic
motion search [33]. This step reduced the use of random numbers in the genetic algorithm. The entire
amount of time required by random number generation is negligible when compared to the whole
runtime of the method in a broader search region. However, when the search space is small, the same
random number generation becomes a computational burden. Four-step genetic motion search
combined the advantages of genetic motion search and four-step search [34]. This algorithm does not
use the crossover to generate new offspring. Instead, the algorithm relies on the fixed size-based
mutation to generate new offspring in the future generations. Table 2.1 compares various genetic motion

search.

Particle swarm optimization [35,36] was also a popular algorithm for motion estimation. Several
research articles explored different variants of particle swarm optimization for motion estimation
[37,38]. Yuan et al [37] proposed to assign the velocity of the particles from the neighboring blocks
instead of doing it randomly. Pandian et al [38] proposed two changes to improve the performance of
particle swarm optimization. A deterministic pattern-based allocation was suggested by Pandian et al.
to replace the random assignment of a position to the initial particles (as shown in figure 6).
Additionally, Pandian et al. suggested an extra termination criterion for the particle swarm optimization-
based motion estimation algorithm in addition to the two standard termination conditions of particle
swarm optimization (maximum iteration and convergence of solution). When the location of the global
best particle and the location of the current coding unit coincide, the algorithm will terminate. By

eliminating unnecessary calculations, these two modifications speed up the algorithm's execution.

A differential evolution-based motion estimation approach was proposed by Cuevas et al. [39], where
the initial population was chosen according to a predetermined pattern rather than randomly. To
estimate the fitness of a new solution from the calculated fitness of earlier solutions, Cuevas et al. also

presented a nearest neighbor interpolation (NNI) technique. This approach approximates the fitness of
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a solution from the previously calculated fitness of other solutions. Therefore, NNI assisted in

minimizing the computation load. It is a three-step approach to calculate the fitness of the solutions.

Table 2.1: Comparisons between different genetics algorithm-based block matching process.

GMS [24]

LGMS [33]

4GMS [34]
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with a biasing towards
the central region of

search space.

High

Yes
Probability is low.

High

Yes
(Dynamic Population
Control Scheme)

No

Binary

Generated in a
deterministic way with
a biasing towards the
central region of

search space.
Low

No
Probability is high

Small

Yes

Decimal

Randomly generated
with a biasing towards
the central region of

search space.

Low

No
Probability is High.

4

N

=

!

.

H

LR

F

(a)

(b)

Figure 6 Deterministic search pattern for PSO based motion estimation by Pandian et al [38]

(a) Diamond pattern (b) Square Pattern.
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a) If the new search point is closer to the present best fit solution between all generations than a
distance d then the fitness function will be calculated using normal procedure (new solution 1
in figure 7).

b) If the new search point is not closer than any of the reference search points calculated in the
previous generation the fitness function will be calculated using normal procedure (new
solution 2 in figure 7).

c) Ifthe new search point is in a neighborhood by a distance d of previous any search points except
the current best solution, then the fitness can be approximated for the new search point from

previous reference (new solution 3 in figure 7).

j L] » X

New
Solution 1

Solution 2

New

Solution 3 Best Solution

New
Solution 2

Figure 7 NNI for fitness approximation.

Dixit et al [40] used a normal differential evolution-based block-matching algorithm for motion
estimation. The harmony search algorithm-based motion estimation algorithm used the same pattern as
[39] to generate the position of initial harmonics. Also, the algorithm used the NNI for fitness
approximation. Bhattacharjee et al [41] combined the best of harmonic search and differential evolution
for motion estimation. The normal harmonic search was followed from the beginning to the end. Only

the pitch adjustment of harmony search was replaced by crossover operation in differential evolution.

An artificial bee colony-based optimization algorithm was developed by Karaboga et al [42]. But the

algorithm consumes a huge amount of computation to achieve the best result. This is not applicable to
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motion estimation algorithms. Therefore, Cuevas et al proposed to replace the fitness calculation with
NNI in the artificial bee colony optimization-based motion estimation algorithm [43]. Later, Hemanth
et al [44] proposed various patterns to select the initial position of the bees in the artificial bee colony-

based motion estimation process.

Jaya algorithm-based motion estimation process outperformed the test zone search (TZS) algorithm,
the benchmark algorithm in the most recently developed H.266 video coding standard [45, 46]. Most
evolutionary algorithms have some general parameters such as the number of initial populations, the
maximum number of iterations, and so on, as well as some algorithm-specific parameters such as
discovery probability in the cuckoo search algorithm, crossover probability, and mutation probability
in the genetic algorithm [47], and so on. Incorrect values for algorithm-specific parameters will lead the
solution to reach local extrema. Rao et al developed the Jaya algorithm to solve the problem of

algorithm-specific parameters affecting the efficiency of various evolutionary algorithms [48].

Initially, the Jaya algorithm-based block matching method differentiates between static coding unit and
dynamic coding unit using zero motion prejudgment, as proposed by Nie et al [25]. The algorithm does
not process static coding units further, but continues motion estimation for dynamic coding units. For
motion estimation, the Jaya algorithm-based block matching method chooses the initial search point
from a predetermined pattern (as shown in Figure 6) to ensure speedy convergence of solutions. The
fitness for the initial solutions was calculated using any function between equations 1, 2 and 3. However,
algorithm employs NNI for fitness approximation of the solutions during further iterations, and preserve
the fitness value from previous iterations to reduce redundant computation. The algorithm also employs
early termination strategy as proposed by Pandian et al [38]. The discussion of optimization in the block

matching method is summarized in Table 2.2.
2.2 Fundamentals of Image Compression

Biomedical imaging is extensively used to diagnose various physiological conditions. Computed
tomography, magnetic resonance imaging, digital x-ray, and many more modalities are the source of
the huge biomedical images. Effective preservation of these digital medical images is essential to
monitor the progression of a patient condition. Image compression is the crucial step to effectively
maintain such a biomedical image repository. Ideally, lossless compression is an ethical requirement
for biomedical signals. However, minor distortions during lossy compression do not change the
diagnostic essence of medical images [13]. Image compression techniques of several types are
available. The most prevalent picture compression methods include predictive-based coding, vector
quantization-based image compression, and transform domain-based image compression. The lossless
image compression approach is predictive-based coding, whereas the other two are lossy image

compression techniques.
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Table 2.2: Comparisons between evolutionary algorithm-based block matching algorithms.
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These popular image compression techniques are block-based compression techniques. The image is
divided into non-overlapping blocks and then processed the image using these blocks. The strong
correlation between nearby blocks is used in predictive image coding to forecast the current block from
prior samples. Transform domain-based image compression transforms the spatial domain signal to the
frequency domain signal using discrete wavelet transform or discrete cosine transform. The coefficient
of high-frequency components in the blocks is considered noise and therefore discarded. Vector
quantization separates the entire picture into numerous tow dimensional non-overlapping blocks, which
are ultimately represented as one-dimensional image vector. The vector encoder maps these image
vectors to the nearest codeword in the codebook. Instead of the image vectors, the index of the codeword
in the codebook along with the codebook are transferred to the decoder. The vector decoder reconstructs
the image vector using the index and codebook. However, certain information loss was there in the
reconstructed image due to the quantization of image vectors into codewords. The codeword size is the
sole parameter that matters for the vector quantization algorithm to provide the optimum rate-distortion
performance. As a result, it is superior to other image compression techniques mentioned [49]. So, the
scope of this research is limited to different vector quantization approaches in an optimization

framework.

2.2.1 Literature review

This section describes a brief review of different research article on vector quantization algorithms.
2.2.1.1 Literature review on vector quantization

The vector quantization method that has gained the most popularity was proposed by Linde, Buzo, and
Gray [50]. The algorithm was given the acronym LBG algorithm as a result. The LBG algorithm can
be considered a generalized Lloyd scalar algorithm [51]. Consequently, it is also known as the

generalized Lloyd algorithm (GLA). This algorithm is composed of four phases.

Step 1, Initially, N¢ image vectors were chosen at random to serve as codewords in a codebook
of size Nc. Both the codewords and the image vectors are N, in size.

Step 2, Based on the Euclidian distance between the image vector and the codewords in the
codebook, map the image vectors {/;, I, ..., I;r}. The codeword {C;, C,, ..., Cn.} with the lowest

Euclidian distance is the one to which the image vector belongs.

FlagCluster,,; = TRUE if difference(C;, I;) < difference(Cj,Im)j LN (Eq.4)

FALSE otherwise

The m” row and "

column of the (M*xN¢) Boolean matrix FlagCluster are denoted as
FlagClustery,;. This position will be true when the m™ image vector belongs to the i cluster as
the Euclidian distance between the m" image vector and the i” codeword is the minimum among
all other codewords.

Step 3, The codewords are updated by computing the centroid of the new clusters.

19|Page



' Count of image vector in it"cluster.

(Eq 5)

Step 4, The algorithm will terminate when the overall mean square error between the image
vector and their respective codeword of the present iteration is smaller than the mean square

error of the next iteration. Otherwise, the algorithm repeats the process from step 2.

There are two major drawbacks to the LBG algorithm. The LBG algorithm creates a locally optimized
codebook. Additionally, the LBG algorithm may create an unequal distribution of the codeword and
the number of image vectors it represents. Sometimes the LBG algorithm assigns more codewords for
a smaller cluster which results in a better approximation of the cluster. As a consequence, the large
clusters have a smaller number of codewords which results in a poor approximation of the cluster. The
improved LBG suggested a utility index, which is nothing more than the cluster's normalized distortion.
[52]. This utility index minimized the distortion inequality between various clusters. But the proposed
algorithm cannot completely optimize the codebook. The pattern-based masking LBG algorithm
recognizes the repetitive patterns inside an image using the local histogram [53]. The predefined
patterns are added up with the peak of the local histogram to generate initial codewords. These
codewords are then used in two-step LBG algorithm for the final codebook. But, the pattern-based
masking approach will have severe complications when the selection of the local histogram peak is

incorrect.
2.2.1.2 Literature review on optimization in vector quantization

Several researchers proposed evolutionary algorithms to optimize the codebook of vector quantization.
This section provides a concise overview of the methodology employed by a select few of these

algorithms.
2.2.1.2.1 Particle swarm optimization based LBG algorithm

The particle swarm optimization (PSO) algorithm was employed to optimize the codebook generated
by the LBG algorithm [54]. The PSO algorithm considered a codebook as a particle in the swarm.
Initially, the codebook generated by the LBG algorithm was assigned as the globally best particle in the
PSO. Other particles in the swarm are generated randomly. The velocity of the particles is also assigned

randomly during the initial phase. The fitness of the particles is calculated based on equation 6.

Np
b= (Eq.6)
N¢ N
Y m=1 Zj=bl ||Imj - Cij“ * FlagClustery,;

The fitness will help to identify the particle best and global best solution during the present iteration.
The velocity and the position of the particles are modified based on the updated best solution using
equation 7 and 8. The operation will continue until the PSO output converges or the maximum iteration

is reached.
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V'ijk = Viji + K171, (pbest;; — Cijx) + K2.72.(gbest; — Cijy,) (Eq.7)
C'ijic = Cij +V'iji (Eq.8)

In equation 7 and 8, i represents the size of the codebook and varies between I to N, j represents the
dimension of the codeword and varies between [ to N, and k is the number of particles and varies
between / to n. Vs and Vi represent the velocity of the i codeword in the & particle. K/ and K2 are
learning rates whereas '/ and »2 are the random numbers vary between () and /. pbest; is the best position
of the i particle whereas gbest is the global best particle. Cix and C’; are the position of the particle in
the present and next iterations. The PSO algorithm-based vector quantization cannot handle a high-

velocity particle in the swarm.
2.2.1.2.2 Firefly optimization based LBG algorithm

The firefly optimization algorithm (FOA) [55] works on the mating principle of fireflies. Fireflies use
their brightness to attract partners during mating and the dark firefly will move towards the brighter
firefly. Chiranjeevi et al [56] proposed a vector quantization algorithm based on FOA. In the approach,
the codebook is modelled as a firefly, and its fitness is modeled as the firefly’s brightness. All but the
brightest firefly is assigned randomly. The output from the LBG algorithm is assigned as the brightest
firefly in initial iteration. Fitness of each solution is calculated based on equation 6. Using equation 9,

the codebook with the lowest fitness will get closer to the best codebook.
Tijk = ||Cijk - Cij1|| (Eq.9)
B = Bo.e¥ ik (Eq.10)

Cije = A= B).Cije + B. Cijie +u (Eq.11)

Cji: is the best particle in i iteration. a, Bo, and y are three random variables that FOA assigns a value
at the start. u is a random variable between () and /. The performance of FOA deteriorates when the

brighter firefly is not available in the solution space.
2.2.1.2.3 Bat algorithm based LBG algorithm

The Bat algorithm (BA) mimics the echolocation of bats [57]. The bats use echo signals to map their
surroundings. The loudness, frequency, and pulse rate of the echo signals help the bats to identify the
desired objects in the environment. Karri et al. proposed a fast vector quantization process based on BA
[58]. This algorithm treats the codebook as a bat. The output codebook from the LBG algorithm was
used as one of the bats among n number of initial bats. The other bats are generated randomly. The
velocity, frequency, loudness, and pulse rate for each bat are assigned randomly during the initial phase.

The fitness of the bats is calculated based on equation 6. The position of the bats is sorted based on the
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calculated fitness. The bat at the top of the list is the best-fit bat. The frequency, velocity, and the
position of all the bats except the best bat are updated using equations 12 to 14.

fk’ = fmax + (fmin - fmax) * P (ECI- 12)
Vi = Vijk + (Cijx — sbest;j) * fy  (Eq.13)
Cijie = Cijie + Vi (Eq.14)

The highest and minimum frequencies at which the bat may create an echo signal are given by f... and
Jmin. P 1s the pulse rate of the echo signal and / is the loudness of the signal. The best fit will have a

random walk around the best solution.

r is a random number between 0 and /. The new bats are selected if the loudness / is larger than a
randomly generated value. The whole process will repeat itself until the BA reaches termination criteria.
The BA has several algorithmic-specific operational parameters. Improper selection of the values for

these parameters can result a locally optimized codebook.
2.2.1.2.4 Cuckoo Search based LBG algorithm

The cuckoo search (CS) algorithm works on the breeding principle of cuckoo [59]. Cuckoo has a
parasitic breeding strategy where the cuckoo lays egg on the nest of other birds. The eggs of the cuckoo
and the host bird have an uncanny resemblance. Therefore, the host bird cannot differentiate between
its own egg and the cuckoo’s egg. Cuckoo eggs hatch faster, and the young hatchlings toss out the host
bird's egg from the nest to avoid competition. This will provide the young cuckoo hatchlings access to
all of the host bird's resources which is a key to their survival. Sometimes, the host bird may find cuckoo
eggs and abandon the nest. Xin she Yang et al proposed the CS based on this behavior of cuckoo. CS
has only one algorithm-specific operational parameter, discovery probability (Pg). It is a measurement
that how often the host bird will be able to identify the cuckoo egg. As the nest will be abandoned by
the host bird after the discovery of the cuckoo egg, a new nest will replace the old nest in the solution
pool. Therefore, the discovery probability can be considered as the balance between the intensification

and maximization of the search.

Chiranjeevi et al. proposed a vector quantization algorithm based on this CS [60]. The algorithm treats
each codebook as a nest of the cuckoo. The fitness of the solutions is calculated based on equation 6.
The best solution was selected based on the calculated fitness. A levy flight was performed around the
best solution to find better solutions. The algorithm considers P,% of the worst fit net as the abandoned
nests and therefore replaces them with new ones. The process will continue till the CS satisfy the

termination condition.
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2.2.1.2.5 Whale Optimization based LBG algorithm

Whale optimization algorithm employs local and global search at the same time. This gives whale
optimization algorithm a distinct advantage over other metaheuristic algorithms. This algorithm was
used to optimize the codebook of vector quantization process [61]. Initial solution in the algorithm was
generated randomly. Peak Signal to Noise Ratio was used as cost function by the whale optimization
algorithm to evaluate the fitness of each codebook. The algorithm utilizes a circular motion to look for
a better solution in the vicinity whereas it also employs a spiral motion for global search. Equation 16

describes the circular as well as spiral motion.

c Cijy —A.dist  when r < 0.5
Uk~ dist + eP.cos(2.m.1) + C;j; ~ whenr > 0.5

= (Eq. 16)
Where,

dist=|K.Ciy —Cijp| , A=2.ar—a, K=2.r —

In the Equation 16, C’; is the codebook of next iteration, Cjx is the codebook of current generation, Cjj;
is the optimal codebook in present iteration. r, / are random numbers between 0 and 1, a is a variable

number between 2 and 0, and b is a fixed number.
2.2.1.2.6 Lion Optimization based LBG algorithm

The lion optimization (LO) algorithm simulates the roaming and mating procedure of the lion. LO
algorithm-based vector quantization use opposition-based learning [62]. The LO treats each codebook
as a lion. The codebook from the LBG algorithm is one of the initial solutions. Other solutions are
initialized randomly. Based on the fitness of the solution the best lion is selected. The new position of
the lions is generated through mating. The mating process is explained using equation 17. The LO-

based vector quantization stops when the algorithm reaches its termination condition.

cl. = Cijk lf Tand() > pri
Uk ™ RAND() otherwise
where — (Eq. 17)
Ciin — Ci:
pr; = 0.1 + min <O.S,M>
Cijx _

The result of the LBG algorithm is one of the initial solutions in every evolutionary algorithm-based
vector quantization technique. This was due to the fact that including a locally optimized solution as an
initial population will assist the evolutionary algorithm in quicker convergence [63]. However, the
computation time of these evolutionary algorithm-based vector quantization processes is significantly
longer than that of the LBG algorithm. Table 2.3 summarizes the study on vector quantization in

optimization frameworks.
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2.3 Fundamentals of Signal Compression

Biomedical signal compression is one of the important challenges in telemedicine applications as this
signal accounts for the majority of data during continuous telemonitoring. Signal compression, like
image compression, may be accomplished through the use of transform coding or vector quantization.
In transform coding, the signal is transformed to the frequency domain using Fourier or wavelet
transform, and the process uses less precise data to store the transform coefficients. As a result, the
compression is achieved at the expense of information loss. Vector quantization is the dictionary-based
compression process that quantize the signal vector to the nearest codeword. This is also another lossy
compression which is already discussed in detail. Entropy encoder is the lossless signal compression
process that follow the limit of Shannon’s source coding theorem. The most common entropy encoders

are Huffman coding and arithmetic coding.
2.3.1 Literature review on Signal Compression

Huffman coding encodes a symbol based on its probability of occurrence in the signal. The encoded
bits that are assigned to a symbol, are decided by the Huffman tree. The symbol with the highest
likelihood will have the fewest bits, whereas the symbol with the lowest probability will have the most
bits. However, in many cases, the number of independent symbols in a symbol set is enormous. The
majority of these symbols have an extremely low probability of occurrence. Nonetheless, this symbol
will appear in the Huffman tree and the dictionary. This increases the size of the codewords as well as
the process's complexity. Modified implementation of Huffman encoding [64] resolves the issue by

combining all the less probable symbols into one symbol.

Another limitation of Huffman encoding is that it only employs codewords of integer length, resulting
in suboptimal coding. Arithmetic coding successfully overcomes this issue by encoding the signal with
a real number between 0 and 1. The interval shrank as new symbols were encoded. The intervals are
separated depending on the probability of occurrence of the symbols, and the interval where the new
symbol fits in was zoomed in for the following symbol. The operation will continue until the signal
expires. However, the procedure is also terminated when the machine's precision is exceeded. This is
the most significant constraint of arithmetic coding, limiting the number of symbols that may be
encoded in a codeword. The decoding process of arithmetic coding cannot begin without receiving the

whole codeword. This is another drawback of arithmetic coding.
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Table 2.3: Comparisons between evolutionary algorithm-based vector quantization algorithms.

PSO based | FOA based BA based CS based WOA LO based
LBG [54] LBG [56] LBG [58] LBG [60] based LBG [62]
LBG [61]
Include the
output from
LBG as Yes Yes Yes Yes Yes Yes
initial
solution
Algorithm
specific
o] Two Three Three One Two One
parameter
Use of
random High High High Low High High
number

2.4 Statistical Measures

Peak signal-to-noise ratio (PSNR): PSNR is described as the logarithmic ratio between the achievable
maximum power of a signal and the distortion present in the signal [65]. The PSNR is used to measure
the quality of the output signal reconstructed from the compressed symbols. PSNR is high when the

distortion in the output is low and vice versa.

(maximum achievable power of a signal)?

PSNR = 101log;, ISE

(Eq.18)

Structure Similarity Index Metric (SSIM): SSIM measures the structural similarity between two signals.
It is used to identify the deviation of the output signals from the actual signal [66]. SSIM is 1 when the
signals are identical. However, the value of SSIM moves toward 0 as the output signal deviates from

the original.

(2% Avl * Av2 + C1)(2 * Vary, + C2)
SSIM = - . (Eq.19)
(Av1? + Av22 + C1)(Var{ + Vary + C2)

AvI and Av2 are the average amplitude of the two signals. Var; and Var; are the variances of two signals.
Var; is the joint variance between two signals. C/ and C2 are the two constants that provides stability

to equation 19 when any of the denominators reaches zero.
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Speed Improvement Ratio (SIR): SIR quantifies an algorithm's improvement in execution speed when
compared to the reference algorithm [67]. It is the ratio of the execution time difference between the
algorithm and the reference algorithm to the execution time of the reference algorithm. The SIR will be
zero when the speed of the two algorithms is identical. The SIR will increase when the speed of the
algorithm is higher than the reference algorithm. But the SIR will be negative when the algorithm is

slower than the reference algorithm.

(TlmeReferenceAlgo - TlmeAlgorithm)

SIR = (Eq.20)

Timegeferencealgo
Bjontegaard metrics: Bjontegaard metrics include Bjontegaard PSNR (BDSNR) and Bjontegaard rate
(BDR). G. Bjontegaard [68] introduced this metric to compare the two video coding settings. BDR
calculates the bitrate difference between two video coding settings having the same output distortion.
The difference in distortion between two video coding settings with the same bitrate is determined by
BDSNR. A negative BDSNR implies that the initial video coding settings perform better in terms of
distortion than the second at the same bitrate. A positive BDSNR suggests the inverse. At an identical
amount of output distortion, the first video coding settings have a smaller bitrate than the second one

when the BDR is positive. Negative BDR implies the contrary.

Bits per pixel (bpp): Bits per pixel [69] evaluates the number of memory bits required in a compressed
signal to represent one pixel of a raw signal. It was mostly used to evaluate the performance of image

compression. Low bpp is desirable for any image compression algorithm.

number of bits required for compression signal

bpp = (Eq.21)

Total number of pixles in the raw image

Compression ratio (C,) and Compression Factor (Cg): The compression factor (Cr) is a ratio between
the size of the uncompressed and compressed signal [70]. The Compression ratio (C;) is just the
opposite. The High compression factor and low compression ratio indicate that the size of the

compressed signal is significantly reduced by the algorithm.

Size before compreession
F =

Eq.22
Size after compression (Eq.22)

1
¢, =— (Eq.23)
Cr

Pearson Correlation Coefficient (Pc): Pearson correlation coefficient measures the degree of
association between two signals [71]. The correlation is 1 when both signals are identical. The

coefficient will move toward 0 when the signals do not correlate.

covariance(signal,, signal
P, = (signaly, signal,) (Eq.24)

Usignall Usignalz
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The 6signair and osignarz are the standard deviation of two signals signal; and signal;.

Sensitivity and Specificity: Sensitivity and specificity describe the correctness of a test [72]. Sensitivity
measures the true positive rate by the ratio between true positive events and the sum of true positive
and false negative events. Specificity calculates the real negative rate as the ratio of truly identified

negative events to the sum of true negative events and false positive events.

True Positive

Sensitivity =
y True Positive + False Negative

True Negative (Eq.25)

Specificity =
pecificity True Negative + False Positive

27|Page



Chapter 3:

Effect of codebook
optimization: Diagnostic

preservation
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Image compression in medical and health services aids in the efficient use of the network and storage
capacity of a hospital. However, attaining significant compression without losing the diagnostic essence
of a medical image is a significant challenge. This chapter presents a thorough investigation of the
preservation of diagnostic essence in Jaya algorithm-based image compression techniques. The Jaya
algorithm is used to optimize the codebook of vector quantization. The performance of the proposed
algorithm is evaluated based on PSNR and SSIM between the original image and the compressed image.
In addition to the typical assessment metrics, the preservation of diagnostic essence was assessed by
comparing the diagnostic region of interest in the original and compressed images in terms of

correlation, sensitivity, and specificity.
3.1 Jaya Algorithm

Rao et al. presented the Jaya algorithm to alleviate the difficulties associated with algorithm-specific
parameters in nature-inspired optimization algorithms [48]. It only depends on general parameters such
as the size of the initial population and maximum iteration number. The Jaya algorithm operates on the
premise of pushing the present solution towards the global best solution and away from the global worst
solution. The steps of the Jaya algorithm are stated below and the algorithm flow chart of the algorithm
is presented at figure 4:

Step 1, The value of the initial population size and maximum iteration is assigned.

Step 2, The initial populations are placed randomly in the search space. Random initialization
ensures that solutions are distributed uniformly throughout the search space.

Step 3, The fitness of the solutions is calculated based on the fitness function.

Step 4, Arrange the solutions based on their fitness. The best solution will be at the top of the
list. The solution with the worst fit will be at the bottom of the list.

Step 5, Identify the best and worst solution as Solutionse.s; and Solution.ors:.

Step 6, The solutions are moved towards the best and away from the worst using equation 26.

Solution; = Solution; + r; X (|Solution; — Solution,,s:|) — 1, X (|Solution; — Solution,,,s:|) (Eq.26)

In equation 26, r; and r, are two randomly generated numbers that lies between 0 and 1.

Step 7, The new position of the solution will be accepted if the new position has better fitness
than the present solution.

Step 8, Look for the termination conditions of the algorithm. If maximum iteration has not

been reached or the solution has not yet converged, repeat the process from step 3.
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Figure 8 Flowchart of the Jaya algorithm.
3.2 Jaya algorithm-based vector quantization

Image is a two-dimensional signal of size (M *xN). The vector quantization process breaks down the
image into small non-overlapping (mxm) equal-sized blocks. Each block was then converted to a
(1 xN,) image vector where Ny=m’. The vector quantization process generates a codebook that consist
of Nc codewords. The size of each codeword is similar to the size of an image vector. The image vector
in the compressed signal was replaced by the index of the codeword in the codebook with the shortest
distance to that vector. The N, number of pixels has been replaced with a value that takes log(N¢) bits
to represent. Therefore, the computing method in equation 21 for the number of bits required to

represent a pixel (bpp) may be updated to equation 27 for the vector quantization process.

_log, N¢
==

bpp (Eq.27)
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Each codebook Codebook; is treated as a distinct solution in the Jaya algorithm-based vector
quantization process, which is a (N¢xNy) size matrix. There are # initial solutions. The solution set {C}
has a total size of (n xNcxNs). Equation 6 is used to assess the fitness of each solution or codebook.
The Jaya algorithm will try to obtain a solution with maximum fitness. The details of the algorithm are

as follows and the algorithm is presented as flowchart in figure 10:

Step 1, The vector quantization process divides the image into M number of image vectors.

Step 2, As stated by the Jaya algorithm, » number of initial solutions must be generated randomly.
However, Merwe et al [63] established that using a locally optimized codebook as an initial solution
in an evolutionary algorithm-based clustering makes the solution converge quicker. As a result, the
locally optimized codebook from the LBG algorithm is included as one of the initial solutions in
the Jaya algorithm-based-vector quantization process. Other (x-1) initial codebooks or solutions are
generated randomly. Figure 9 depicts a visual depiction of the whole solution matrix.

C = {Codebook,,Codebook,, ... ... ,Codebook,}  (Eq.28)

¢ N[a >

Codebook; Codebook, Codebook,

Figure 9 Initial population of Jaya algorithm-based codebook optimization.
Step 3, The fitness of each solution was computed based on equation 6. Arrange the solution based on
their fitness. The best and worst fit solution will have the first and last solution in set {C}.
Step 4, The position of the solution has been modified based on equation 26.
Step 5, The solution will move to the new solution if it has better fitness than the present position of
the solution.
Step 6, The algorithm will terminate when the solution has converged or the iteration has reached its

maximum limit. Otherwise, the process will repeat from step 3.
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Figure 10 Flowchart of the Jaya algorithm-based vector quantization.
3.3 Performance evaluation of Jaya algorithm-based vector quantization with normal test image

Four standard test images of 512x512 resolution (“Lenna.jpg”, “baboon.png”, “peppers.png”, and

“goldhill.png”) are used to evaluate the performance of the algorithm. These images are standard test

image and used by various algorithms to evaluate performance. The images are available at hlevkin

open database (https://www.hlevkin.com/hlevkin/Q6testimages.htm (last accessed on 21% June, 2023)).
The algorithm's initial population and its maximum iteration are set to 30. In the Figures 11 and 12, bpp
vs PSNR performance and the speed of the discussed algorithm were compared with several other vector
quantization algorithms listed below. The methodologies of the following algorithms have been

previously discussed in the literature review (Chapter 2).

(a) LBG algorithm
(b) PSO based LBG algorithm (PSOLBG).
(c) Firefly optimization algorithm based LBG algorithm (FOALBG).
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(d) Bat algorithm based LBG algorithm (BALBG).
(e) Pattern based masking LBG algorithm (PBMLBG).

(b)
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bpp vs PSNR for 'Goldhill' image
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Figure 11 The test images and the comparison of bpp vs PSNR performance (a) Test image Lenna (b)
Test image Baboon (c¢) Test image Goldhill (d) Test image Peppers (¢) bpp vs PSNR for test image
Lenna (f) bpp vs PSNR for test image Baboon (g) bpp vs PSNR for test image Goldhill (h) bpp vs
PSNR for test image Peppers
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Algorithm Execution time (sec) in different bpp
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Figure 12 Execution time of various algorithms execution time for different test images with varying

bpp (a) Lenna (b) Baboon (¢) Goldhill (d) Peppers

In terms of PSNR, the Jaya algorithm-based vector quantization process outperforms all benchmark
algorithms except PBMLBG. For the test image “Lenna”, Figure 11e demonstrates that the proposed
algorithm and LBG algorithm almost maintain the same output image quality. But the performance of
the proposed algorithm is superior to the PBMLBG for other test images. The speed of the Jaya
algorithm-based vector quantization is faster than every evolutionary algorithm-based LBG process
when the size of the codebook is small. However, the algorithm performs slower than others when bpp
reached 0.5625. The iteration of the proposed algorithm is set to 30 whereas the iteration of PBMLBG

was limited to 2. Therefore, PBMLBG executes faster than Jaya algorithm-based vector quantization.

3.4 Preservation of diagnostic essence in Jaya algorithm-based vector quantization

The preservation of diagnostic essence in Jaya algorithm-based vector quantization was demonstrated
using two test images from the diabetic retinopathy dataset (available at

https://www.kaggle.com/c/diabetic-retinopathy-detection (Last accessed on 23rd December 2022)).

This dataset is an open dataset and free to use for non-commercial research purposes. Table 3.1 lists the
PSNR and SSIM between the actual image and the compressed image. Besides these traditional
similarity metrics, The article also compare the diagnostic region of interest in the original retinal

images and compressed retinal images.

There are several diagnostic regions of interest in retinal imaging. The optical disc and blood vessels in
retinal images are two important examples of such regions. The few anomalies associated with retinal
blood vessels are hemorrhages, microaneurysms, neovascularization, and so on. On the other hand,

pigment epithelium is the anomaly in the optical disc. As a result, we chose these two important areas
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of interest to assess the algorithm's ability to preserve diagnostic essence. To detect blood vessels in
retinal images, spatial filtering-based image segmentation is performed. Active contour-based image
segmentation is utilized in retinal imaging to detect optic discs. Figures 13,14,15 and 16 show the
identified blood vessels and optic discs in retinal imaging. The correlation, sensitivity, and specificity
between the blood vessels extracted from the actual image are the blood vessels extracted from the
compressed images are presented in Table 3.2. Also, Table 3.3 presents the correlation, sensitivity, and

specificity between the extracted optical disc from the original image and the compressed image.

Table 3.1: PSNR and SSIM between actual image and the compressed image.

Size of the codebook 13_niht 13_teft

PSNR SSIM PSNR SSIM

8 18.57 0.5156 19.0502 0.5039

16 18.8843 0.5352 32.1804 0.7148

32 30.3243 0.5846 32.349 0.5758

64 36.9035 0.7329 31.0367 0.5938

128 38.5508 0.832 38.1879 0.8156

256 39.7243 0.9649 39.65 0.9417

512 41.0718 0.9712 41.0391 0.952

Table 3.2: Correlation, sensitivity and specificity between the blood vessels extracted from the

actual image and the compressed image

Size of the 13_right 13 _left
codebook Correlation | Sensitivity | Specificity | Correlation | Sensitivity | Specificity
8 0.6038 0.6135 0.9733 0.5856 0.6041 0.979
16 0.6821 0.7268 0.9824 0.7005 0.6944 0.9852
32 0.7755 0.8901 0.9801 0.7414 0.8106 0.9864
64 0.8128 0.9012 0.985 0.7795 0.8397 0.9908
128 0.7787 0.9387 0.9713 0.8029 0.8857 0.9862
256 0.8361 0.9344 0.9849 0.8249 0.8986 0.9859
512 0.8431 0.9378 0.9851 0.8475 0.9094 0.9915
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Table 3.3: Correlation, sensitivity and specificity between the optical disc extracted from the actual

image and the compressed image

Size of the 13 right 13 left
codebook Correlation | Sensitivity | Specificity | Correlation | Sensitivity | Specificity
8 -0.0113 0 0.9863 -0.0025 0 0.9992
16 -0.0057 0 0.9963 -0.0086 0 0.9906
32 0.9379 0.8796 0.9998 0.0498 0.0185 0.9997
64 0.9321 0.0115 0.9997 0.9488 0.9676 0.999
128 0.9545 0.9761 0.9999 0.9662 0.9832 0.9993
256 0.9588 0.981 0.9999 0.9568 0.9931 0.9991
512 0.9601 0.9802 0.999 0.9761 0.9448 1

Figure 13 The retinal test image (a) “13_left” (b) Extracted blood vessel on “13_left”. (c-i) Extracted

blood vessel on “13_left” compressed by Jaya algorithm-based vector quantization with codebook

size (c) 8 (d) 16 () 32 (f) 64 (g) 128 (h) 256 (i) 512
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Figure 14 The retinal test image (a) “13_right” (b) Extracted blood vessel on “13_right”. (c-1)
Extracted blood vessel on “13_right” compressed by Jaya algorithm-based vector quantization with

codebook size (c) 8 (d) 16 (e) 32 (f) 64 (g) 128 (h) 256 (i) 512

(b) (d)

(e) () (€3] (h)
Figure 15 (a) Extracted optical disc on “13_left”. (b-h) Extracted optical disc on “13_left” compressed

by Jaya algorithm-based vector quantization with codebook size (b) 8 (c) 16 (d) 32 (e) 64 (f) 128 (g)
256 (h) 512.
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(b) (d)

(d) (©) (H (2)

Figure 16 (a) Extracted optical disc on “13_right”. (b-h) Extracted optical disc on “13_right”
compressed by Jaya algorithm-based vector quantization with codebook size (b) 8 (c) 16 (d) 32 (e) 64
(f) 128 (g) 256 (h) 512.

From Table 3.1, it is evident that the quality of the compressed image increased with the size of the
codebook. The diagnostic essence is also improved with the codebook size. After the size of the
codebook is 64 or larger than 64, the correlation between the retrieved optical disc from the original
and the compressed image improves significantly. The same is true for the correlation between the
retrieved retinal blood vessel from the original and compressed images. Image compressed with
codebook having codeword number equal to or below 64 often detect false blood vessels and optic disc

in retinal images.
3.5 Jaya algorithm-based vector quantization with added residue

Vector quantization is a lossy compression. It is evident from Tables 3.1, 3.2, and 3.3, that the Jaya
algorithm-based vector quantization is losing information. But biomedical signal compression should
preserve information. As a result, rather than only transferring the codebook and index map to the
decoder, a quantized residue matrix produced by subtracting the original and compressed images is also
transmitted to the decoder. This residue matrix will compensate for the information loss at the decoder.
However, adding an extra residue matrix will reduce the compression efficiency. The process to add

and encode the residue matrix is described below:

Step 1, Calculate the codebook and the index map using Jaya algorithm-based vector quantization

algorithm.
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Step 2, Reassemble the image using the codebook and index map.

Step 3, Calculate the difference between the original image and the reassembled image. The gray image
has an intensity between 0 and 255. Therefore, the difference matrix will have a value between
-255 and 255.

D = Reassembled Image — Original Image (Eq.29)

Step 4, The quantized difference matrix will have 256 quantization levels. The first half of these
quantization levels are for the positive numbers in the difference matrix which lies between 0 and
255. Another half of the quantization levels are for the negative numbers. As a result, the positive
values in the difference matrix will be assigned to a level between 0 and 128. Negative values in
the difference matrix will be placed above the 128™ quantization level in the quantized difference

matrix using equation 30.

D(;'y) D(x,y) =0
Q(xy) = - D(x,y) 5 (Eq.30)
> (x,y) <0

In Equation 30, Op (x, y) is the quantized difference matrix. x and y are position in the matrix.
Step 5, The quantized residue matrix is encoded using the lossless Lempel-Ziv-Markov chain

compression algorithm (LZMA) [73]. The LZMA technique is also used to encode the index map.
Step 6, The decoder receives the codebook, as well as the encoded index map and quantized residue

matrix.

In the decoder, the quantized difference matrix will do the reverse steps to reconstruct the difference
matrix. However, due to quantization error, the reconstructed difference matrix at the decoder will not

be the same as the difference matrix in the encoder. The decoder will follow the below steps:

Step 1, Decode the encoded index map and quantized difference matrix.

Step 2, Perform the opposite steps of equation 30.

2% Qq(x,y) Qq(x,y) <128
(127 — Qp(x,y)) % 2 Q4(x,y) =128

The difference matrix in the encoder and decoder are a little different because of the quantization

D’(x,y) — (qul)

error. Therefore, the difference matrix is represented using D (x,y).
Step 3, Reassemble the image using the codeword and the index map.

Step 4, Add the difference matrix with the reassembled image to get back the original image.
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Table 3.4: PSNR and SSIM between actual image and image compressed with Jaya algorithm-

based vector quantization with added residue.

Size of the codebook 13_nght 13_teft

PSNR SSIM PSNR SSIM

8 53.0742 0.9965 53.0762 0.9965

16 53.0767 0.9962 53.0772 0.9965

32 53.0692 0.9961 53.0834 0.9962

64 53.0796 0.9961 53.0698 0.9962

128 53.07 0.996 53.0645 0.9962

256 53.0668 0.9959 53.0763 0.9962

512 53.0613 0.9958 53.0901 0.9962

Table 3.5: Correlation, sensitivity and specificity between the blood vessels extracted from the

actual image and the image compressed with Jaya algorithm-based vector quantization with added

residue
Size of the 13 right 13 left
codebook Correlation | Sensitivity | Specificity | Correlation | Sensitivity | Specificity
8 0.9229 0.9676 0.9937 0.9302 0.965 0.994
16 0.8649 0.9284 0.9892 0.939 0.9686 0.9951
32 0.8488 0.9263 0.989 0.931 0.945 0.9956
64 0.8588 0.9795 0.9949 0.9318 0.9643 0.9955
128 0.8458 0.9742 0.9954 0.9394 0.9726 0.9962
256 0.8531 0.9816 0.9936 0.9335 0.9706 0.9955
512 0.8543 0.9855 0.9938 0.921 0.9727 0.9955

Table 3.6: Correlation, sensitivity and specificity between the optical disc extracted from the actual

image and the image compressed with Jaya algorithm-based vector quantization with added residue

Size of the 13 right 13 left
codebook Correlation | Sensitivity | Specificity | Correlation | Sensitivity | Specificity
8 0.9969 0.9958 0.9999 0.9958 0.9963 0.9999
16 0.9963 0.9984 0.9999 0.996 0.9964 0.9999
32 0.9951 0.9922 0.9999 0.9971 0.9949 1
64 0.996 0.9917 1 0.9968 0.9945 1
128 0.9964 0.9936 1 0.9972 0.996 1
256 0.9959 0.9921 1 0.9965 0.9926 1
512 0.9961 0.9924 1 0.9967 0.9964 1
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Figure 17 Extracted blood vessel on “13_left” compressed by Jaya algorithm-based vector

quantization with added residue and codebook size (a) 8 (b) 16 (c) 32 (d) 64 (e) 128 (f) 256 (g) 512.

Figure 18 Extracted blood vessel on “13_right” compressed by Jaya algorithm-based vector

quantization with added residue and codebook size (a) 8 (b) 16 (¢) 32 (d) 64 (e) 128 (f) 256 (g) 512

3.6 Diagnostic essence preservation in Jaya algorithm-based vector quantization with added

residue

The two biomedical test images “13 left” and “13 right” are used to evaluate the changes in
performance after adding the residue matrix in Jaya algorithm-based vector quantization. Table 3.4
illustrates the PSNR and SSIM of the original image with the image compressed using the new
algorithm modification. In addition, Tables 3.5 and 3.6 assess the retention of diagnostic essence by

contrasting the optic disc and blood vessels retrieved from the original image with the image
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compressed using the algorithm with added residue. The comparison is made in terms of correlation,

sensitivity, and specificity.

(e) ® (2

Figure 19 Extracted optic disc on “13_left” compressed by Jaya algorithm-based vector quantization
with added residue and codebook size (a) 8. (b) 16. (c) 32. (d) 64. (e) 128. (f) 256. (g) 512.

(d)

(H (2)

Figure 20 Extracted optic disc on “13_right” compressed by Jaya algorithm-based vector quantization

with added residue and codebook size (a) 8. (b) 16. (c) 32. (d) 64. (e) 128. (f) 256. (g) 512.

The PSNR and SSIM performance in Table 3.4 indicates that the added residue reduces the loss of
information to a negligible level. The retrieved blood vessel and optical disc from the compressed retinal

pictures have high sensitivity and specificity which indicates a significant improvement in the

diagnostic essence after the inclusion of the residue matrix.
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3.7 Comparison with Lion optimization-based vector quantization process

The lion optimization-based LBG algorithm is the state-of-the-art bio-medical image compression
algorithm. The Lion optimization-based LBG [62] outperformed other image compression algorithms
in terms of PSNR and compression ratio. The output from Jaya algorithm-based vector quantization

process is also compared with the Lion optimization-based LBG algorithm in Figure 21.
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Figure 21 Comparison of performance of various algorithms (a) PSNR for “13_left” (b) Compression

ratio (C;) for “13_left” (c) PSNR for “13_right” (d) Compression ratio (C;) for “13_right”.

The PSNR from the lion algorithm-based LBG and Jaya algorithm-based vector quantization with

added residue is almost equal for “13 left”. However, PSNR from Jaya algorithm-based vector

quantization is slightly better than lion algorithm-based LBG for “13 right”. However, the lion

optimization-based LBG always achieved a better compression ratio than Jaya algorithm-based vector

quantization with added residue. The Jaya algorithm-based vector quantization without the residue will

always achieve a far better compression ratio. But, the output distortion in Jaya algorithm-based vector

quantization without the residue is very high compared to Lion optimization-based vector quantization

algorithm and Jaya algorithm-based vector quantization with the residue.

Appendix

The extraction of retinal blood vessel from fundus retina images

The following steps are used to extract retinal blood vessels from retinal fundus images.

Step 1, The intensity profile was extracted from the smoothened fundus retinal images.

Step 2, The contrast of the intensity profile was enhanced and a special average filter was used to
identify the high frequency regions.

Step 3, The high frequency regions are the blood vessels in the retinal images which are then extracted
using an adaptive threshold-based image binarization process.

The extraction of optical disc from fundus retina images

The extraction process of optical disc from the retinal fundus images are listed below.

Step 1, The arteries inside the retinal images were cleared using image morphological operations.

Step 2, Filter was applied to remove the noise from the image.

Step 3, The brightest area in the filtered image is selected as the optic disc. The disc area was further

segmented using an active contour model.
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Chapter 4:

Operational parameter
optimizations in block

matching algorithm
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Motion estimation is an integral part of any video coding standard as well as the most computationally
expensive process. Block matching algorithms are the most common technique to estimate the motion
inside a frame. These algorithms divide the whole frame into non-overlapping coding units and the
position of each coding unit is searched in the search area of the previous frame. The difference in
coding unit position in the reference frame and current frame is the motion of the coding units. The full
search algorithm compares every coding unit in the search area for the best estimation. However, that
is very computationally expensive. Therefore, several other block-matching motion estimation
algorithms were developed to reduce the computation expense of a full search. Test zone search is one
among them which is able to retain the motion estimation quality of the full search algorithm at reduced

computation cost. The test zone search is also the benchmark algorithm in versatile video coding.

4.1 The test zone search algorithm

The test zone search algorithm is a combination of zonal and sampled extensive exploration of the
search area. As a result, the algorithm maintains the balance between local search and expensive brute-
force search. The test zone search algorithm initially performed a zonal search around the search center.
The search center was decided by the motion vector predictor. The advanced motion vector predictor
[30] or the history-based motion vector predictor [74] are commonly used to predict the initial search
center. The zonal search was accomplished by a variable-size square or diamond pattern search window.
The size of the search window will vary between 0 and the size of the search area. The test zone search
terminates when the best match is found at the search center after the initial zonal search. The test zone
search continues with a two-point search to investigate the remaining undiscovered coding units for a
further better result when the distance of the best match is merely one from the search center. The search
process will perform a refinement search when the best match was at a distance greater than one but
smaller than the sub-sampling frequency of the search window during raster search (Zaser). The raster
search is performed when the best match of the zonal search is having a distance greater than the .-
from the search center. The raster search samples the whole search window uniformly at a rate of Juger
and each sampled coding unit in the search area is compared with the present coding unit. The best

match among the sampled coding unit is used as the new search center for the refinement search.

The test zone search is faster than the full search. However, there are some areas for improvement.
Parmar et al. [75] proposed a pentagon search pattern for the initial zonal search to further improve the
search speed. The pentagon search pattern was reduced 32% search points in the zonal search. Kibyea
et al. [76] replaced the raster search with a small and large diamond pattern search, which increased the
speed of the test zone search up to 49%. Goncalves et al. proposed an octagonal axis pattern-based

raster search. This increased the test zone search algorithm speed by 60% [77].
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Figure 22 Zonal search with variable sized window (a) Diamond pattern (b) Square pattern

Figure 23 Sampling of search area during raster search with /,,se=4.
4.2 Operational parameters in the test zone search algorithm
The pace of the test zone search is influenced by the size of the search area since the total number of
search points explored during the initial zonal search is directly proportional to the size of the search

arca.
Nzonaisearchpoints = {(log,(size of search area) —1) X 9 + 5} (Eq.32)

Nzonaisearchpoinis in Equation 32 denotes the number of investigated search points in the initial zonal
exploration of the test zone search method. Sant’Anna et al [78] documented that the most of coding
units have observed very minor motion from their primary search center. Furthermore, a survey in Table
4.1 with test sequences having various motion characteristics establishes that 50%-60% of the coding
units observe no motion and 10% observe very small motion in the test sequences with complex motion.
But, the value of Nzonaisearchpoins for the coding unit with complicated motion and the coding unit with

minimal motion is the same as the search area of the test zone search is constant for every coding unit.
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Figure 24 Flowchart of the test zone search algorithm.

The speed of the test zone search is also influenced by the sampling frequency of the search area during

the raster search, [.r, as the number of search points explored during the raster search is inversely
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proportional to Jraser. A high value of L. will have inadequate sample points in the search area whereas
a low value of I will eliminate the difference in search points between a complete full search and
sampled full search. Therefore, the value of I..s.r should balance between the adequate search points in
the raster search as well as the speed of the search.

Every coding unit has the same operating parameters in the test zone search algorithm. However, a
coding unit with complicated motion requires a substantially different set of values for these parameters
than a coding unit with a simple motion. As a result, the value of the parameters may be optimized to

increase the performance of the test zone search method.

Table 4.1: Percentage of coding units with zero, low and high motion vectors in various test sequences

) o Coding unit with Coding unit with
. Coding unit with )
) Video . smaller than 7- | greater than 7-pixel
Video name o no motion or . .
characteristics ) pixel movement or | movement or high
zero motion (%) ) )
low motion (%) motion (%)
Akiyo Low motion 99.95 0.03 0.02
Bowing Low motion 100 0 0
Carphone Moderate motion 92 7 1
Coastguard Moderate motion 82 13 5
Football Moderate motion 86 12 2
In to Tree Low motion 95 5 0
Old Town Cross | Moderate motion 89 11 0
Crowd Run High motion 60 28 12
Park Joy High motion 54 16 30
Rush Field Cuts | Moderate motion 86 6 8

4.3 Motion Factor

The motion factor (My) is a crude approximation of motion inside a coding unit. To compute the motion
factor, it employs the motion information matrix proposed by Tang et al [79]. The binarized difference
matrix created by subtracting the reference frame from the current frame is the motion information
matrix. The motion information matrix's true pixels represent motion, whereas the false pixels reflect
no motion. The P-frames have one reference frame. Therefore, it has only one difference matrix and
one motion information matrix. However, the B-frames have two reference matrices and two difference
matrices. As a result, the motion information matrix is formed by combining two binarized difference
matrices using logical AND operation.

Dif ferenceMatrix, = | ReferenceFrame ; — CurrentFrame | (Eq.33)

Dif ferenceMatrix, = | ReferenceFrame , — CurrentFrame | (Eq.34)

51|Page



1 when DifferenceMatrix, > Th

0 when DifferenceMatrix; < Th (Eq.35)

BinarizedDif ferenceMatrix, =

1when DifferenceMatrix, > Th

0 when DifferenceMatrix, < Th (Eq.36)

BinarizedDif ferenceMatrix, =

Motion Information Matrix

= BinarizedDif ferenceMatrix; N BinarizedDif ferenceMatrix, (Eq.37)

The motion factor is the ratio of the number of true pixels contained within a coding unit of the motion
information matrix to the total number of pixels contained within the coding unit. The motion factor is
highly correlated with the motion vector. In Figure 25, a comparison of the motion factor calculated by
Equations 33-38 and the motion vector generated by the full search process for the various test
sequences listed in Table 4.1 demonstrates a strong positive relationship between these two variables.
Therefore, a coding unit with a high motion factor has the highest motion. This coding unit requires a
big search window for better motion estimation. Furthermore, the value of /.- should be small for
such coding units as a small /... will sample adequate search points in the search area during the raster
search. The coding unit with a small motion factor has minor motion. Hence, coding units with such
motion need a small search window and a large value for /... For the majority of the coding units, the
motion vector for such coding was centered on the primary search center. As a result, a raster search
will be unnecessary in the majority of such scenarios.

number of true pixles inside the coding unit of motion information matrix
s number of total pixels inside the coding unit

(Eq.38)
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Figure 25 Relationship between motion factor (M) and motion vector.
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4.4 Cuckoo Search
Inspired by the parasitic breeding behavior of cuckoos, Xin-She Yang developed the Cuckoo search
algorithm to solve the optimization problem in numerous engineering problems. Cuckoo never create
their nests and depend on other birds to nurture the cuckoo offspring. The mother cuckoo laid eggs in
the nest of another bird. The cuckoo egg bears a resemblance to the egg of the host bird. Therefore, the
host bird accepts the egg of the cuckoo and raises the offspring of the cuckoo. These observations are
mimicked using three rules in the cuckoo search algorithm.

(a) One cuckoo will lay only one egg in a randomly chosen nest of a host bird.

(b) All host birds will not be able to hatch every egg laid by the cuckoo. Therefore, some eggs will
be destroyed and replaced by new ones in future generations.

(c) The host bird occasionally discovers the egg of the cuckoo and leaves the nest completely. Such
nests are replaced by new nests accompanied by the probability of discovery in the algorithm
representing the host bird's odds of discovering the cuckoo egg. cuckoo egg. The chances of
discovery of the cuckoo egg by the host bird are represented by the probability of discovery in
the algorithm.

Based on these three rules, the steps of the cuckoo search algorithm are described below.

Step 1, The n number of initial solutions are randomly placed of the search space.

Step 2, The algorithm evaluates the fitness of the n solutions and arranges the solution based on fitness.

Step 3, One new solution is generated using Levy distribution as Levy distribution explores the search
space better than the uniform distribution [80].

Step 4, Select any solution randomly from the list of solutions. Compare the fitness of the selected
solution with the recently generated solution.

Step 5, When the new solution is more fit, the selected solution from the list will be replaced.

Step 6, Compare the probability of discovery to a random number between 0 and 1. When the randomly
generated number is greater, the old unfit solutions are replaced with new ones in the following
generation.

Step 7, Examine the termination criteria. Continue the algorithm from step 2 if the algorithm has not
met the termination conditions.

4.5 Optimization of operational parameter using cuckoo search

Step 1, Generate n number of solutions randomly. Every solution consists of a pair of randomly
generated values of search area size and lyuser, the sampling frequency of the search area during
raster search for all coding units. The size of the search area will have any value between 16 and
64. The I4ser will vary between 3 and 16.

The versatile video coding divides a frame into multiple coding units. Figure 27 depicts an example

of a partitioned frame. Equation 39 is an example of a k” solution for the frame shown in figure 27.

The k™ solution is made up of a search area size and I 4. value for all the coding units in the
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example. In equation 39, SWy and I*.x denote the size of the search area and the sampling

frequency of the search area during the raster search of the X" coding unit.

Initialize the solution randomly

J

Y
|Calculate the fitness and arrange the

solution based on fitness.

- J

Yes

[ Generate one solution using Levy
flight and calculate fitness

Compare it's fitness with a randomly
selected solution from present
S iteration.

New
solution is fit
than old?

[Calculate ﬁtness}

for new solutions

Replace old solution only with
newly generate solution

Y

fReplace the unfit solution with new |

L one. )

No

Max iteration?

A

Figure 26 The flowchart for cuckoo search algorithm
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Figure 27 Example of a partitioned frame.

Solutionk — { SWAk;( I%SterA ’ SW){' IfasterB' SVVIé{' Ifrl'{asterCJ SWé:' IfasterD' SVVE, IfasterE'} (Eq. 39)
SWF , IrasterF' SWG ’ I‘rasterG'SWH' IrasterH' SWI ’ Irasterlt SVV] ’ Iraster]
Step 2, The motion vector and the motion factor are highly correlated. Therefore, this relation is
exploited to reduce the computation of fitness. The motion factor has a value between 0 and 1.
Therefore the value of 7. and size of the search area are also normalized between 0 and 1.

Size of Search Area

NormalizedSearchAreaSizey x = (Eq.40)

Upper limit of Search Area Size

Iraster

Upper limit of L-yster

Normalizedlrastery x = (Eq.41)

NormalizedSearchAreaSizerx and Normalizedlraster, x represents the normalized search area size
and normalized L4 of the X coding unit at " iteration. The motion factor has an inversely
proportional relation with /... and a directly proportional relation with the size of the search area.
Therefore, a proportion constant multiplied by the ratio between the normalized search area size
and normalized [,.s.r must be nearer to the motion factor. Hence, the difference between the ratio
and the motion factor will be near zero when the motion factor is high, the search area is large and
Lasier 1s low or the motion factor is low, the search area is small and /.4 is large. The cuckoo search
minimizes the differences between the ratio and the motion factor of all the coding units to get the
optimal values of search area size and /.4, for all coding units.

NormalizedSearchAreaSizey x

Ratioff = (Eq.42)

Normalizedlrastery x

dif ferencef = | My, — (C Ratio,)f)l (Eq.43)
Last Coding Unit

Error, = z differencel  (Eq.44)
X=1

The fo is the motion factor of the X" coding unit. C is the proportion constant and has a value of

1. The Error, sums up all the absolute differences between the ratio and motion factor for all coding

units. The value of Errory is minimized to achieve optimization.
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Step 3, The solutions are arranged based on the fitness evaluated using Equations 41 to 44.

Step 4, A solution is randomly generated using levy flight. The fitness of the newly generated solution
was evaluated using Equations 41 to 44. A randomly selected solution from the solution list of the
present iteration is compared with the new solution based on fitness. The new solution will replace
the randomly selected solution from the solution list if the new solution has better fitness.

Step 5, The worst solutions are replaced by randomly generated new solutions. The probability of
discovery decides the number of solutions to be replaced.

Step 6, Look for the termination condition of the algorithm. The algorithm terminates when the
termination criteria are fulfilled. Else, the process continues from the calculation of fitness.

Step 7, After the termination of the cuckoo search, the solution at the top of the last generation is the
optimal solution. This solution has the optimal values of the search area and /.- for every coding
unit.

4.6 Genetic Algorithm

Inspired by natural selection, researchers proposed a genetic algorithm to solve optimization problems.

Genetic algorithm uses genetic operators such as mutation and crossover to reach the optimal solution.

The genetic algorithm is performed based on the below steps.

Step 1, Initialize the solution randomly. The random solution will uniformly distribute the solution to
all over the search space.

Step 2, Calculate the fitness of the solution and arrange the solution based on the fitness.

Step 3, The fit solution will have a higher possibility of survival. Therefore, top-fit solutions are
retained for the future generations. Others are replaced by new offspring in the next generation
which is generated using the crossover operation. The tournament selection [81] process will be
used to select the solution from the present generation for crossover operation.

Step 4, Mutation is a sudden change in the solution. The mutation was applied to a randomly selected
solution.

Step 5, The algorithm will look for the termination criteria. If the solutions are not converged, the

process will repeat from the fitness evaluation.

- Arrange the Selection
Initialize Calculate L2 .
. solution based on of Crossover
solution the fitness .
fitness solution

A

Solution
Converged

Figure 28 The flowchart of genetic algorithm
4.7 Optimization of operational parameter using genetic algorithm
Step 1, Generate n number of solutions randomly. Each solution contains a pair of search area sizes

and Jyuse for every coding unit in the frame. Equation 39 is an example of such a solution.
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Step 2, Calculate the fitness using equations 41 to 44. The solution with minimum error has the highest
fitness. The solutions are arranged based on their fitness. T

Step 3, The crossover probability for the problem is taken as 0.5. Half of the solutions in the present
generation will survive in the next generation. The unfit solutions are replaced by generating new
solutions using genetic operations. Uniform crossover is applied to generate new solutions.

Step 4, The mutation probability is 0.1. One out of ten solutions is randomly chosen from the solution
list for mutation. The mutation will replace a part of the solution with a new value.

Step 5, The algorithm will terminate when the output is converged or the maximum iteration has been
reached. Otherwise, the process repeats from step 2.

Step 6, The best solution after the termination of the algorithm contains the optimized value of the
search area and [ .., for every coding unit in the frame.

4.8 Fuzzy set, fuzzy rule and fuzzy inference

The uncertainty in real-world challenges cannot have a proper representation in the binary crisp logic

set. Zadeh et al [82] proposed the Fuzzy set to represent the uncertainty in a more accurate way. In this

set, every object in a universe is a member of every set in that universe. The association between the

object and the universe is depicted by the continuous grad membership value. In Equation 45, ur(4) is

the membership value of an object 4 in a fuzzy set F. ur(4) has a value between 0 and 1.

F =A ur(A) whereAeU (Eq.45)

U in Equation 45 represents a universal set. Fuzzy inference is the mapping between two fuzzy sets.

The relations between two fuzzy sets are described using if-then rules. These rules have the advantage

of describing complex mathematical relation in simple language. A binary crisp set infers the

subsequent portion as true only when the antecedent component is completely true. The partial truth of

antecedence can be inferred as a partial truth of consequence via fuzzy inference. Out of many fuzzy

inference methodologies, the Mamdani inference [83] system is used in this process and the inference

may be calculated using equation 46.

RuleR; : If kis P thenmis O

R;(k;m) = min( up(k), uo (m)) mamdani inference (Eq. 46)
Ri(k;m) is the relational matrix obtained by inferring the rule R;. Multiple relation matrix Ri(k;m) are
combined using union operation to form a final relational matrix R(k;m).

R(k; m) = maxj, R;(k; m) (Eq.47)
The membership distribution of m is O’ may now be determined using the final relational matrix and
the observed membership distribution for & is P’.

Yo' (M) = max(min(,upr(k),R(k; m))) (Eq.48)

4.9 Fuzzy inference-based decision-making module for adaptive operational parameter
The fuzzy inference-based decision-making module is a pre-process module that computes the value of

operational parameters of test zone search using fuzzy rules and Mamdani inference of the rules. The

frameworks consist of a rule base, fuzzification, Mamdani inference engine, and defuzzification blocks.
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The rule base comprises the relationship between the framework’s input parameter, the motion factor,
and the framework’s output parameter, the size of the search area, and [ Fuzzification converts the
normal crisp set into a fuzzy set and it was performed on every input and output variable using
conventional fuzzy membership functions. Defuzzification converts the output of a fuzzy set into a crisp
set and it was performed using the center of gravity method [84].

4.9.1 Fuzzy rule base

The rule base, which contains the relation between input and output parameters, is the foundation of the
fuzzy decision-making framework. However, the relations between the parameters are not a
mathematically deterministic one. Hence, the relationship was defined using if-then rules by observing
the relation between the motion factor and size of the search area as well as the value of e A small
study between the motion factor and the mean square error from the test zone search motion estimation
process with various sizes of the search area is conducted. The value of /4. is constant throughout the

study. The research offers three findings.
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(a) Coding units with small motion (M <0.25) can have a smaller search area (size is less than 16
pixels). The smaller search areas will have simple operational complexity.
(b) Coding units with moderate motion (0.25<M;<0.6) will have a medium search area (size is
greater than 16 pixels but smaller than 64 pixels).
(c) Coding units with high motion (M;>0.6) will have complex motion, therefore the large search
area (size is greater than 64 pixels).
Three laws may be derived from these three findings.

Rule 1:1f My is High then Size of search areais Large
Rule 2:1f My is Moderate then Size of search area is Medium
Rule 3:If Myis Low then Size of search area is small.

In the test zone search algorithm, a zonal search is sufficient to estimate the minor motions of the coding
unit. Hence, the value of I has zero effect on the motion estimation. However, the complex motion
necessitates a detailed exploration of the search area. Therefore, the value of /... has an effect on the
coding units with complex motion. The study between the motion factor and the difference in motion
vectors derived from full search and test zone search with various values of /.. is depicted in figure
30. Full search motion vectors are ideal, and every motion estimation approach is aimed to achieve
those identical motion vectors. As a consequence, the error is calculated using the difference in motion
vectors acquired by full search and test zone search. The value of the search area is constant throughout

the study. The study offers two findings.

Motion Factor vs Average difference of Motion Vectors
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Figure 30 The study between the motion factor and the difference in motion vectors derived from full

search and test zone search with various value of /,4szer
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(a) The value of I has no effect on the output motion vector when the motion factor is less than
0.65 (M;<0.65). Therefore, the coding units with low and moderate motion can have a higher
value for Lsier.

(b) The complex motion (Mz>0.65) requires a smaller value of ser.

Two laws can be derived from the findings.

Rule 1:1f My is Low or Moderate then l,qgteris High
Rule 2:1f My is High then I 45¢eris Low

4.9.2 Fuzzification

Fuzzification is the process to convert the normal crisp set into the fuzzy set. The motion factor (M))
quantifies the motion profile of a coding unit. The relationship illustrated in Figures 29 and 30 classified
the coding units into three motion profile sets: low, moderate, and high. The motion profile of a coding
unit with a motion factor less than 0.25 is low. The motion profile of the coding unit with a motion
factor between 0.25 and 0.7 can be inferred as medium motion. Other coding units with a motion factor
greater than 0.7 have a high motion profile. Equations 49, 50, and 51 are used to compute the

membership value, and figure 31 illustrates the membership distribution function.

=1 for My < 0.25
_ M =035 025 < M, <035

S 0' for My > 0.35

=0
=W for 0.25 < My < 0.35
.umoderate(Mf) =1 for 0.35 < Mf < 0.65 (Eq.50)

(—8-1) for My > 0.75

=0 for My < 0.65

) =M 06 065 < M <075 (Eq.51
A 1 for Mg > 0.75

From figure 29, the size of the search area is classified into three different groups: {small, medium, and
large}. A Small search area has a size smaller than 16 pixels. Medium search areas are those that are
greater than 16 pixels but smaller than 64 pixels. The large search area has a search area that is greater

than 64 pixels. Equations 52, 53, and 54 are derived from this observation to fuzzify the search area

size.
SearczA%ﬂea —16 for SearchArea < 8
Usman (SearchArea) = 35 for SearchArea < 16 (Eq. 52)
_(0 ) for SearchArea > 16
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Figure 31 Membership distribution for fuzzy set with {high, moderate, and low} motion

=0 for SearchArea < 8
_ SearchArea — 8
B (8) for 8 < SearchArea < 16
Hmeaium(SearchArea) =1 for 16 < SearchArea < 32 (£q.53)
SearchArea — 64
= for 32 < SearchArea < 64

(=32)

SearchArea > 64

Membership Value

————n Large
Medium
— — —-Small

40 60 80 100 120
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Figure 32 Membership distribution for fuzzy set with {large, medium, small} search area
SeacmA?‘ea _39 for SearchArea < 32
Hiarge(SearchArea) = for 32 < SearchArea < 64  (Eq.54)

_(312) for SearchArea > 64
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The relation between Myand /.4 identifies two groups for L..- {large, small}. The membership value

for the two sets of .45 can be calculated based on Equations 55 and 56.

I =1_11 for Laster <7
t
tsmai (Iraster) = % for7 < Laster <11 (Eq.55)
=0 for Lgster > 11
=0 for Lgster <7

I -7
P‘large(lraster) = % fOT' 7 < Iraster =11 (Eq. 56)
=1 fOT' Iraster > 11

— — — -small
large

Membership Value

0.2 -

13 15

Iraster

Figure 33 Membership distribution for fuzzy set with {large, small} Zser.
4.9.3 Mamdani inference engine

Mamdani inference requires the fuzzy set as input and output parameters. Therefore, the fuzzification
is immediately followed by the Mamdani inference engine. Using Equations 46 and 47, this inference
process generates the relational matrix which records the intensity of every rule in the rule base for
every conceivable input and output combination. Then using equation 48, a union operation was

performed to combine all the relational matrices into a final relational matrix.
Rlow_sma”( Mg, SearchArea) = min (ulow (Mf), Usmall (SearchArea)) (Eq.57)

Rmoderate—medium( Mf' SearchArea) = min (:“moderate (Mf): Hmedium (SearchArea)) (Eq.58)
Riarge—nign( My, SearchArea) = min (,ularge (M), ttnign (SearchArea)) (Eq.59)

R( My, SearchArea)
= max(RlOW_sma”( Mg, SearchArea), Rmodemte_medium( Mg, SearchArea),
Riarge—nign( My, SearchArea)) (Eq.60)
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Rlow—mod—large( Mf! Iraster) = min (max (ﬂlow (Mf)! Hmoderate (Mf)) »Hiarge (Iraster)) (Eq.61)

Rhigh—small( Mf: Iraster) = min (.“high (Mf)' Usmaul (Iraster)) (ECI- 62)
R( Mg, Iraster) = max (Rlow—mod—large( Mg, Iraster)' Rhigh—small( Mg, Iraster)) (Eq.63)
4.9.4 Defuzzification

Output from the Mamdani inference engine was a fuzzy set. However, real-world problems require a
crisp value. As a result, the defuzzification procedure converts the output fuzzy sets to crisp values. The
center of gravity method is the most popular process for defuzzification. This calculates the centroid of

the fuzzy set and divided the whole fuzzy set into two equal parts.

g)
Figure 34 Sample frame from each test sequences (a) Akiyo (b) Bowing (c)
Carphone (d) Coastguard (e) football (f) Crowd Run (g) In to tree (h) Old town
cross (i) Park Joy (j) Rush Field Cut

With the help of the motion factor of a new coding unit and the relational matrix in Equation 60, the
Mamdani inference engine will produce a new fuzzy set for the search area size of the new coding unit.
Similarly, with the help of the relational matrix in Equation 63 and the motion factor, the Mamdani
inference engine will generate the fuzzy set for the L..-. Both the output fuzzy set was converted to a

crisp value using Equation 64 and 65.
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Y au(u(Search Area) x Search Area)
COGsearcharea =
Yau k(Search Area)

(Eq.64)

COG _ ZAll(.u(Iraster) X Iraster)
fraster ZAll ﬂ(lraster)

(Eq.65)

4.10 Performance evaluation

The test sequences mentioned in Table 4.1 is used to compare the output of traditional test zone search
as well as the optimized test zone searches. PSNR, SSIM, and the speed of the search are used to
compare the performances. Figure 34 provides the sample frame from each test sequence. Table 4.2 and
Table 4.3 compare the performance of PSNR and SSIM among all the algorithms.

The size of the search area and the value of [ are 128 and 7 for classical test zone search as well as
enhanced test zone search. The search area size varied between 16 and 128 and the value of /e lies
between 5 and 15 for the other three processes. From Table 4.2 and 4.3, it is evident that the optimization
of the operational parameters does not impact the output quality of the test zone search algorithm.
However, the optimization of the parameters reduced the computational load of the test zone search.
Table 4.4 summarizes the improvement in execution speed of the test zone search algorithms with
optimized operational parameters relative to the conventional test zone search methods. The speed of
the test zone search is improved by every optimization process. However, genetic algorithm-based
optimized operational parameters is able to boost the speed of the test zone search better than others.

Table 4.2: Comparison of the PSNR performance among all algorithms.

Genetic Cuckoo search | Fuzzy inference-
Classical | Enhanced | algorithm based | algorithm based | based framework
Video name test zone | test zone optimized optimized for adaptive
search search parameter-test parameter-test parameter- test
zone search zone search zone search
Akiyo 30.77 30.71 30.77 30.77 30.77
Bowing 30.08 29.87 30.23 30.05 30.35
Carphone 24.09 24.06 24.39 24.40 24.50
Coastguard 21.23 21.01 21.32 21.27 21.28
Football 17.31 17.21 16.95 17.04 17.24
CrowdRun 19.47 18.60 19.29 19.63 19.52
Old Town Cross | 23.44 23.19 23.36 23.43 23.45
In To Tree 24.31 23.90 24.17 24.29 24.30
Park Joy 18.64 17.61 18.43 17.35 18.59
Rush Field Cut 22.97 22.77 2291 22.97 22.98
Average 23.23 22.89 23.18 23.12 23.30
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Table 4.3: Comparison of the SSIM performance among all algorithms.

Genetic Cuckoo search | Fuzzy inference-
Classical | Enhanced | algorithm based | algorithm based | based framework
Video name test zone | test zone optimized optimized for optimized
search search parameter-test parameter-test parameter- Test
zone search zone search zone search

Akiyo 0.75 0.74 0.75 0.75 0.75
Bowing 0.73 0.72 0.73 0.73 0.73
Carphone 0.72 0.72 0.72 0.72 0.72
Coastguard 0.65 0.65 0.65 0.65 0.65
Football 0.52 0.51 0.51 0.51 0.52
CrowdRun 0.61 0.58 0.60 0.61 0.61
Old Town Cross 0.60 0.60 0.60 0.60 0.60
In To Tree 0.59 0.58 0.59 0.59 0.59
Park Joy 0.61 0.57 0.61 0.59 0.61
Rush Field Cut 0.67 0.67 0.67 0.67 0.67
Average 0.64 0.63 0.64 0.64 0.64

Table 4.4: Comparison of the SIR between traditional test zone search and other algorithms.

Video name

Enhanced test

zone search

Genetic
algorithm
based
optimized
parameter-test

zone search

Cuckoo search
algorithm based
optimized
parameter-test

zone search

Fuzzy
inference-based
framework for
optimized
parameter- Test

zone search

Akiyo
Bowing
Carphone
Coastguard
Football
CrowdRun
Old Town Cross
In To Tree
Park Joy
Rush Field Cut

Average

0.28%
3.62%
8.02%
3.23%
6.87%
1.55%
11.72%
0.20%
0.66%
6.03%
4.22%

6.22%
31.98%
13.72%
-2.96%
54.78%
76.85%
79.26%
50.49%

1.52%
64.07%
37.59%

6.05%
25.36%
18.53%
11.63%
44.77%
24.84%
50.21%

2.85%
81.13%

2.30%
26.77%

29.90%
24.20%
41.64%
1.85%
37.61%
35.54%
65.08%
46.62%
22.41%
40.38%
34.52%
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Speed improvement compared to traditional TZS
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Figure 35 The speed improvement ratio between traditional test zone search and other algorithms.
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The optimization of the operational parameters significantly improved the speed of the test zone search
algorithm. However, the block-matching algorithm itself is an optimization problem where the goal is
to minimize the SAD between the template coding unit in the current frame and the coding unit within
the search area of the reference frame. The genetic motion search, PSO-based block matching process,
and other evolutionary algorithm-based block matching processes specifically address the minimization
problem in block matching algorithm. But the speed of such algorithms is slow due to the repeated
calculation of SAD. Also, the high use of random numbers makes the algorithm slower. Cuevas et al
developed several block-matching procedures based on different evolutionary algorithms. These
algorithms used the evolutionary control approach [85] where the computationally expensive fitness
evaluation is replaced by fitness approximation to reduce the computation. The local fitness
approximation model has several advantages over the global approximation model such as the local
approximations are fast, and reliable and it considers the closest neighbor during approximation. Cuevas
et al. proposed using nearest-neighbor interpolation to approximate the fitness of the solutions. The
state-of-the-art Jaya algorithm-based block matching process used fitness approximation, zero motion
prejudgment, and early termination criteria to reduce the computation cost. This algorithm selects the
initial population from a predefined position for quick convergence and uses Equation 26 to change the
position of the solutions. However, Equation 26 has two random numbers which reduce the speed of
the Jaya algorithm-based motion estimation process

5.1 Modified cuckoo search algorithm

The traditional cuckoo search algorithm was employed by Bhattacharjee et al. [86] for the block
matching process. In traditional cuckoo search, the solutions are using Levy flight [80] to move towards
a better position. Furthermore, the worst solutions in the current iteration are replaced by new solutions
generated randomly in the next iteration. All of these reduced the speed of the traditional cuckoo search-
based block-matching process. Traditional cuckoo search algorithm also has the algorithm-specific
parameter, probability of discovery. The value of the probability of discovery has a great impact on the
problem output. An incorrect value of this parameter can lead to false optima.

The modified cuckoo search algorithm replaces the algorithm-specific parameter with a deterministic
parameter, the evolution factor. The modification in the cuckoo search algorithm was inspired by the
breeding behavior of certain species of cuckoo. Generally, cuckoo lays an egg on the nest of other bird
and depends on the host bird to raise their offspring. Therefore, the egg of the cuckoo and the host bird
should look similar. The host bird quickly develops certain changes to reduce the parasitic incident.
Some species of cuckoo specialize in a single host bird and continue an evolutional race with the host
bird [87]. Hence, the egg of the cuckoo and the egg of the host bird looks completely identical with
time. The host bird has zero probability to recognize the egg of the cuckoo. These observations are
simulated in a modified cuckoo search algorithm with four rules.

(a) The number of cuckoos and host nests are equal.
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(b) Instead of laying eggs in any available nest, each cuckoo will try to lay eggs in only one specific
nest in every iteration. The fittest egg between the host bird and the cuckoo will survive the
iteration.

(c) As one individual cuckoo specializes only in one nest, the resemblance between the egg of the host
bird and the cuckoo is magical. It is impossible for the host bird to recognize and destroy the egg
of the cuckoo.

(d) An evolutionary race continues between the cuckoo and the host bird. This race is represented by
the evolution factor a in the modified cuckoo search algorithm. The o can be calculated by dividing
the fitness of a solution with the worst fitness of that iteration. The solution with the best fitness
has a small evolution factor and the worst fit solution will have the highest evolution.

itness;
f : (Eq.66)

a; = _—
' fitnessyorst

Based on these four rules, the modified cuckoo search algorithm can be described as follows.

Step 1, Initialize the first # number of solutions randomly for uniform distribution.

Step 2, Calculate the fitness of the solution.

Step 3, Arrange the solutions based on their fitness.

Step 4, Update the position of the solutions for next iteration ¢+/. The solution S/ in present iteration ¢
will be pushed away from the worst solution S, of the iteration # by a factor of a;. Also, a random
element using levy flight was added to the final equation to avoid a local optima trap.

SF = 5" — a;(S;* — Storse) + Levy Flight (Eq. 67)

Step 5, Compare the fitness of S/*/ with S/’. If the fitness is better than the new solution will replace the
old solution in next iteration. The same process from step 4 and step 5 will continue for solution 1
to n.

Step 6, Check for the termination criteria. If the conditions are not satisfied, then continue the process

from step 2.

begin
Generate n number of initial solution using random/biased distribution.
Calculate the fitness of the solutions.
Arrange the solution based on their fitness.
while (iteration< maxliteration or stopping criteria)
Get n number of cuckoos (V;*™) using equation 6.
Evaluate the fitness of n cuckoos
fori=1:n
Compare in cuckoo with iv, nest
I'f(VitH <Vit)
ReplaceV," withV;***.
else
DiscardV,'™*
end if
end for
Rank the solution and find the current best and worst.
Increase iteration by one
end while
Publish the last best solution
end

Algorithm 1: The pseudocode for modified cuckoo search algorithm.
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Table 5.1: Differences between cuckoo search and modified cuckoo search algorithm.

Cuckoo Search Modified Cuckoo Search

The present solution will be

In cuckoo search, the new pushed away from the worst
New solution generation solution generation is a levy solution of the present
flight around the solution. iteration. Also, a random factor

is added using levy flight.

) Represent the evolutionary
No concept of scaling factor.
race between cuckoo and the
However, one scaling factor
host bird. It can be calculated
was added up with the output
Evolution factor using the ratio between the
from Levy Flight. For most of
o _ fitness of present solution and
the applications, the scaling
) the fitness of the worst
factor is 1. )
solution.

Algorithm specific parameter Probability of discovery. No such parameter.

5.2 Block matching algorithm using modified cuckoo search

The modified cuckoo search algorithm-based block matching process employs several strategies to

reduce the computation cost. Zero motion prejudgment, deterministic initial search patter, fitness

approximation, history preservation and adaptive termination strategy of the algorithm are few of them.

Step 1, The zero-motion prejudgment was proposed by Nie et al in adaptive rood pattern search. It was
estimated by Nie et al that the template coding unit has no motion when the SAD between the
template coding unit in current frame and the coding unit at same position in reference frame is
below or equal to 512. Therefore, the motion vector for such coding unit is zero and requires no
calculation. In first step of block matching algorithm using cuckoo search, zero motion prejudgment
differentiate between static and dynamic coding units.

Step 2, The random initialization of solution is performed to distribute the solution uniformly across
the search space. But, incorporating the domain knowledge in initial solution distribution help to
converge the solution faster [88,89]. Therefore, the initial solutions for block matching algorithms
are generated from a deterministic pattern. The pattern can have the square, diamond or hexagonal
geometrical shape around the search center as shown in figure 36.

Step 3, The fitness calculation is performed using NNI. The fitness of initial solutions is calculated
normally. But the solutions from next iteration follow the rules of NNI.

Step 4, The generation of new solution should follow Equation 67. However, the motion vector has
vertical and horizontal components and two random number are going to be used by Equation 67
to calculate the new solutions. But the algorithm used a randomly selected solution from the

preserved search history of previous generations to replace the random levy flight operation.

70| Page



Therefore, equation 67 are updated to equation 68 which minimize the computation of random
numbers. Here, only one random number requires to select one solution from previous search
history. The value of the random number lies between 1 and size of preserved search history.

S, = randomly selected from {S} and S, # Syorse “and Sp, S; Sworse € {S}

St =8, —ai(SiF — Stworst)  (Eq.68)

. | [
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Figure 36 Deterministic initial search patterns (a) Diamond (b) Hexagonal (c) Square
Step 5, The algorithm terminates when
(a) The algorithm reached maximum iteration or the solutions are already converged.
(b) The best solution in present iteration has the same position of the search center.
(c) The SAD between template coding unit and the best coding unit in present iteration is below
the terminating threshold 7. The terminating threshold is first time proposed by this algorithm
and the value of terminating threshold is one third of zero motion prejudgment threshold.
When the terminating conditions are not satisfied the algorithm continue from fitness calculation.
5.3 Ant weight lifting algorithm
Ant has some interesting features. They maintain a hierarchy in their society. The queen ant is
responsible for reproduction where the worker ants are responsible for building the infrastructures.
These worker ants have a wonderful weight carrying capacity compared to own weight. Such surprising
capability comes from the small surface area of their body. The worker ants do not grow any
reproduction organ which further aids their ability to lift weight. Some species of ant are able to lift five
thousand times more weight than their body weight. Researchers are studying this ability to create
strong robotic arm. Three rules are idealized to mimic the behavior of ant weight lifting capability.
(a) The ant that have the worst performance will move to new location in search of food.
(b) Every ant will avoid the area where the food is not available.
(c) The ant which has reached its weight lifting capacity, will move away from the search space. A new
ant will replace the ant with full carrying capacity.
Using the aforementioned rules, the ant weight lifting algorithm is established.
Step 1, The n number of ants are randomly placed across the search space.
s;* = random position of ants
Here k=1 as this is the first iteration, s;= the position of i number of ants, i=1 to n and n is size of

the initial population size.
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Step 2, The fitness of the solutions is evaluated using the fitness function. The collection of weight by
an ant in present iteration is the normalized fitness value of the ant in present iteration. The

normalization process divided the fitness of the ant with the sum of fitness of all ant in that iteration.

n
wk = fitnessi/Zfitnessj (Eq.69)
j=1

Step 3, Rank the performance of the ant based on their collection in current iteration. Identify the best
ant of the iteration and worst ant of all the iterations.

Step 4, Update the position of the ant using Equation 70 and 71. The best ant will look for more better
solution around their present position. Other ants will move away from the worst ant position.

Spest Tt = Spest® + 1.d  (Eq.70)
s = 5% — 1i(si* = sworse™)  (Eq.71)
In Equation 70 7;is a random variable lies in between -1 and 1. d is a small distance defined based
on the problem. The positions of the ant will only change if the new position has better fitness than
previous position.

Step 5, The cumulative weight collected by ant is the sum of all collected weight by that particular ant
till present iteration. The cumulative weight is reset to zero when the ant changes its position.

Step 6, The ant whose cumulative weight has reached to maximum capacity will leave the search space
and move to central repository. The ant will be replaced by a new ant in random position. The
cumulative weight of the new ant is set to zero.

Step 7, When n number of ant in the repository is within a small enclosed circle with diameter d, then
perform one iteration based local search with n ants randomly placed inside the circle. Best from
this local search is the final output.

Step 8, Check for the termination criteria. The process will repeat from fitness calculation when the
fitness condition is not satisfied.

5.4 Ant weight lifting based block matching algorithm

Step 1, The zero-motion prejudgment will evaluate the current coding unit. If the current coding unit
has no motion, then motion vector will be set as 0 and the process moves to next coding unit.
Otherwise, the algorithm continues the motion estimation process.

Step 2, Place the initial solution from a predefined pattern. The ant weight lifting algorithm use a square
geometrical pattern. However, the pattern can have diamond or hexagonal geometrical shape.

Step 3, Calculate the SAD between the template and coding unit and initial solutions. Arrange the
solutions based on their fitness and identify the best and worst solution.

Step 4, Check for early termination. The early termination condition is same as modified cuckoo search
algorithm-based block matching process. The algorithm terminates if the condition satisfied.

Step 5, Generate new position for the ant using Equation 70 and 71. Move the ant to new position if

the new position has better fitness.
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Step 6, Replace the ant which have reached their maximum weight lifting ability with a new ant in new
position. The old ant are placed into the central repository.

Step 7, Terminate the algorithm when the maximum iteration has reached or the solution has
converged. The best solution among the present generation as well as the solution in the repository
is final motion vector.

5.5 Performance evolution
The performance of these algorithms is compared with the full search algorithm and Jaya algorithm-
based block matching process. The whole frame is divided into 16x16 coding units. Each coding unit
has a search area of 16 pixels around it. The maximum iteration size is set as 50. The algorithms are
compared in terms of PSNR, SSIM, and speed improvement ratio. The full search algorithm is used as
a reference to measure the improvement in speed of other algorithms. Ten standard-definition and five
high-definition test sequences are used for the performance evaluation. The test sequences have
different resolutions and motion characteristics. The test sequences with such diverse characteristics
will test the robustness of the algorithms.
Tables 5.2 and 5.3 lists the PSNR and SSIM performance of the algorithms. The modified cuckoo
search-based block matching algorithm and ant weight lifting algorithm-based block matching
algorithm outperformed the Jaya algorithm-based block matching process. The selection of initial
solutions from different patterns has a very serious impact on the output. The ant weight-lifting
algorithm performs better than the modified cuckoo search-based block-matching algorithm. However,
the difference in performance is very minimal.

Table 5.4 lists the speed improvement ratio for various block-matching algorithms. The speed of the

full search algorithm is the reference speed. Every algorithm observed a significant speed improvement

compared to the full search. However, the ant weight-lifting algorithm-based block matching is
relatively slower than the modified cuckoo search-based block-matching process. The modified cuckoo

search-based block matching process converges quicker when the initial solutions are selected from a

square pattern.
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Figure 37 Ant weight lifting algorithm flowchart
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5.6 The rate-distortion analysis

The rate-distortion analysis compares the block-matching algorithms in terms of the required bitrate to
transmit the video data and the distortion in the output of the video sequence. The video coding settings
used four different quantization parameters {22, 27, 32, 37} to calculate the different bitrate and PSNR
values. From the rate-distortion plots, it is evident that the full search algorithm has the best
performance. The ant weight lifting algorithm-based block matching process performed best among
other algorithms. The difference in performance between the modified cuckoo search algorithm-based
block matching process and the ant weight lifting algorithm-based block matching process is very
minimum. However, both of the proposed algorithms have better rate-distortion performance compared
to the Jaya algorithm-based block matching method.
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Table 5.2: Comparison of PSNR performance between block matching algorithms

Modified | Modified | Modified A
nt
Jaya Jaya cuckoo cuckoo cuckoo )
weight
algorithm- | algorithm- search search search Hee
ifting
based based algorithm- | algorithm- | algorithm- e
ase
block block based based based
block
matching | matching block block block
) . . matching
Full process- process- matching | matching | matching
- - process-
search Initial Initial process- process- process-
Initial
solution solution Initial Initial Initial
solution
selection selection solution solution solution
selection
from from selection selection selection
from
square diamond from from from
) square
pattern pattern square diamond | hexagon
pattern
pattern pattern pattern
Akiyo 42.80 42.05 42.05 42.36 42.57 42.49 42.57
Bowing | 40.58 38.09 38.42 39.17 39.23 38.73 39.30
Car Phone | 33.13 30.65 30.80 32.17 32.46 32.19 32.40
City 28.90 23.66 24.22 26.80 27.32 26.53 27.10
Coastguard | 29.66 26.02 26.10 27.67 28.19 27.87 28.58
Container | 37.20 37.20 37.20 37.19 37.20 37.20 36.66
Flower 25.26 17.29 17.39 20.28 21.26 20.59 21.92
Football | 20.89 20.84 20.89 19.90 19.46 19.53 19.98
Stefan 23.21 20.80 21.25 21.14 21.27 20.49 21.59
Tennis 26.33 23.70 24.33 25.02 24.97 24.70 25.17
Crowd
27.62 23.93 24.34 2591 25.78 25.90 26.21
Run
Into Tree | 33.20 30.02 30.40 30.82 30.94 30.88 31.03
Old Town
32.34 28.69 29.03 30.45 30.74 30.57 30.88
Cross
Park Joy | 22.61 21.39 21.42 21.05 20.86 20.97 21.32
Rush Field
31.73 29.98 30.29 30.47 30.14 30.35 30.57
Cut
Average | 30.36 27.62 27.88 28.69 28.83 28.60 29.02
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Table 5.3: Comparison of SSIM performance between block matching algorithms

Modified | Modified | Modified A
nt
Jaya Jaya cuckoo cuckoo cuckoo )
weight
algorithm- | algorithm- search search search -~
ifting
based based algorithm- | algorithm- | algorithm- e
ase
block block based based based
block
matching | matching block block block
) . . matching
Full process- process- matching | matching | matching
- - process-
search Initial Initial process- process- process-
Initial
solution solution Initial Initial Initial
solution
selection selection solution solution solution
selection
from from selection selection selection
from
square diamond from from from
) square
pattern pattern square diamond | hexagon
pattern
pattern pattern pattern
Akiyo 0.995 0.994 0.994 0.995 0.995 0.995 0.995
Bowing 0.978 0.949 0.955 0.966 0.967 0.963 0.968
Car Phone | 0.962 0.935 0.937 0.954 0.956 0.954 0.956
City 0.867 0.611 0.652 0.795 0.817 0.785 0.809
Coastguard | 0.921 0.841 0.846 0.881 0.893 0.883 0.902
Container | 0.975 0.975 0.975 0.975 0.975 0.975 0.975
Flower 0.943 0.700 0.706 0.839 0.870 0.849 0.888
Football | 0.623 0.609 0.617 0.575 0.562 0.562 0.582
Stefan 0.857 0.783 0.803 0.795 0.798 0.769 0.812
Tennis 0.832 0.730 0.747 0.790 0.800 0.790 0.804
Crowd 0.853 0.756 0.769 0.797 0.796 0.797 0.805
Run
Into Tree | 0.813 0.724 0.731 0.716 0.719 0.718 0.721
Old Town | 0.824 0.756 0.762 0.766 0.770 0.767 0.772
Cross
Park Joy | 0.798 0.697 0.703 0.719 0.727 0.723 0.737
Rush Field | 0.904 0.888 0.891 0.886 0.884 0.885 0.887
Cut
Average | 0.876 0.796 0.806 0.830 0.835 0.828 0.841
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Table 5.4: Comparison of SIR (%) performance between block matching algorithms

Modified | Modified | Modified A
nt
Jaya Jaya cuckoo cuckoo cuckoo )
weight
algorithm- | algorithm- search search search e
1fting
based based algorithm- | algorithm- | algorithm- e
ase
block block based based based
block
matching | matching block block block )
) . _ matching
process- process- matching | matching | matching
- . process-
Initial Initial process- process- process-
Initial
solution solution Initial Initial Initial
solution
selection selection solution solution solution
selection
from from selection selection selection
from
square diamond from from from
. square
pattern pattern square diamond | hexagon
pattern
pattern pattern pattern
Akiyo 98.80 99.51 99.61 99.52 99.45 98.80
Bowing 96.65 98.23 98.61 98.32 97.94 96.53
Car Phone 96.46 96.10 96.90 96.26 95.52 96.42
City 96.07 93.58 94.82 94.00 92.43 96.09
Coastguard 96.46 94.15 95.23 94.36 93.27 96.35
Container 96.53 98.93 99.14 98.93 98.81 96.51
Flower 97.27 95.92 96.70 96.11 95.08 97.15
Football 93.20 93.74 95.07 94.24 92.89 92.53
Stefan 95.40 95.02 95.97 95.09 94.24 94.98
Tennis 94.85 93.98 95.23 94.24 93.07 94.34
Crowd 95.27 96.65 97.36 96.75 95.99 94.93
Run
In to Tree 94.72 98.74 99.00 98.78 98.49 94.20
Old Town 94.92 98.53 98.82 98.57 98.22 94.46
Cross
Park Joy 92.13 96.13 96.92 96.91 95.39 91.38
Rush Field 96.69 98.66 98.94 98.70 98.43 96.54
Cut
Average 95.69 96.52 97.22 96.72 95.95 95.41
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Chapter 6:

Conclusion and Future work
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The image compression method based on Jaya algorithm-based codebook optimization presented in this
study outperforms existing vector quantization-based image compression processes. The output of the
proposed algorithm with an LZMA encoded residue successfully preserves the diagnostic essence of

the biomedical images.

The operational parameters optimization of test zone search algorithm successfully improves the speed
of the test zone search without degrading the quality of the output. The fuzzy inference-based decision-
making module outperforms the other two proposed processes for modifying the operational parameters

of test zone search.

The modified cuckoo search as well as the ant weight lifting algorithm successfully optimized the block-
matching process. The optimization enhances both the speed and the quality of the output compared to
the state-of-the art Jaya algorithm-based motion estimation processes. The ant weight lifting algorithm-
based motion estimation process surpasses the modified cuckoo search-based block-matching

algorithm.

The codebook optimization approaches may be extended to the one-dimensional signal compression.
There is a high possibility that the codebook optimization method will perform similarly well for one-
dimensional signals. The metric motion factor (My), which is employed in the operational parameter
optimization of test zone search, may be applied in other applications such as frame partitioning, initial
motion vector predictor, and many more. Overall, the compression process of different biomedical

signals is successfully optimized using the proposed methods.
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