- b) Double Exponential smoothing
- c) Decomposition of total correlation between direct and indirect effects through Path Analysis. 4+3+3

Ph.D. Course Work Examination 2023 ECONOMICS

PAPER - 13

Paper: Research Methodology in Empirical Economics]

Time: 2 hours Full Marks: 30

Answer question number-1 and any two from the rest.

1. Answer any *four*: $2.5\times4=10$

- a) Distinguish between Deductive and Inductive Approaches of Research Methodology.
- b) What are the steps to be followed in Multi-Stage Random Sampling Methods?
- c) How do you derive the marginal effect of an explanatory variable from the estimated logit model?
- d) Is Gini Coefficient distribution sensitive? Give reasons in support of your answer.
- e) What happens to Foster Greer and Thorbecke (FGT) Index if α tends to infinity?
- f) Show that Random Walk Process (of a time series data) is non-stationary.
- 2. a) The variations of productivity of rice is due to different types of fertilizers and different soil conditions. The following results are obtained:

[Turn over

Sources of variations	Total Sum of	
of productivity	Squares	freedom
	(TTS)	(df)
Variations due to fertilizers	103.33	2
Variations due to soil conditions	64.67	4
Error	7.305	8

Given that F(2, 8) at 5%=4.46 and F(4, 8) at 5%=3.84

Can we draw conclusion that the differential productivity of a rice is due to fertilizers or soils or both?

b) The test statistic (H) of Kruskal-Wallis (K-W) Non-Parametric Test of ANOVA is given by the following equation:

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{c} \frac{1}{n_i} \left[R_i - \frac{n_i(n+1)}{2} \right]^2$$

Show that this expression can be reduced to the following:

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{c} \frac{R_i^2}{n_i} - 3(n+1)$$

where c = independent samples (viz. number of columns of the K-W Table), the size of the i-th sample be n_i , $n = \sum_{i=1}^{c} n_i$ and R_i be the observed value of the rank sum for the i-th sample. 5+5

- 3. i) How do you tackle multicollinearity problem using Principal Component (PC) analysis?
 - ii) In a five variables model, three variables appear as statistically significant in the first PC; but these three variables generally do not appear as significant in the 2nd PC. What are the underlying reasons for such an outcome?
 - iii) How do you obtain eigen value from the PC?
 - iv) What is the statistical meaning of the square for the factor loadings of a factor in a particular PC?

3+3+2+2

4. Distinguish between K-Means and Hierarchical Cluster Analysis. Show that K=2 Clustering is stable in the following problems of 4 individuals (A, B, C and D) with two variables (X₁ and X₂):

Individuals	X_1	X_2
A	5	3
В	-1	1
С	1	-2
D	-3	-2

5. Write Notes on:

 Engel-Granger method of Co-integration and Error Correction Mechanism