MASTER OF ARTS EXAMINATION, 2023

(1st Year, 2nd Semester)

ECONOMICS

[ECONOMETRICS AII]

Time: Two Hours Full Marks: 30

Answer any two questions

1. Consider the following two-equation model:

$$y_1 = \gamma_1 y_2 + \beta_{11} x_1 + \beta_{21} x_2 + \beta_{31} x_3 + \varepsilon_1$$

$$y_2 = \gamma_2 y_1 + \beta_{12} x_1 + \beta_{22} x_2 + \beta_{32} x_3 + \varepsilon_2$$

- a. Are all the equations of the above model identified?
- b. Establish whether or not the following restrictions are sufficient to identify (or partially identify) the model:

(i)
$$\beta_{12} = \beta_{22} = 0$$

(ii)
$$\beta_{32} = 0$$
 and $\gamma_2 = 0$

(iii)
$$\beta_{21} + \beta_{31} = 1$$

- c. Now imposing the restriction $\beta_{32} = 0$ & $\beta_{21} = 0$ estimate the structural form parameters of the above model using the appropriate method of estimation. Justify why you have chosen that particular method of estimation. 1+2+3+3+5+1=15
- a. If errors are independent over time but correlated across cross section units then what
 is the appropriate method of estimation. Discuss the method by considering a suitable
 model.
 - b. Discuss the assumptions of the fixed effects and the random effects models and the issues related to the choice between these models.
- 3. a. Compute the autocorrelation function of the following AR(2) process and plot their correlograms: 6+6+3=15

$$X_{i} = 0.9X_{i-1} - 0.2X_{i-2} + \varepsilon_{i}$$

- b. What are the null and alternative hypotheses in unit root tests?
- c. Consider a ARMA(2,2) model and discuss how will you estimate that ARMA model. (3+1)+5+6=15