current prices, W, and a general price index, P, for the manufacturing sector for a certain industrialized country for the period 1973 to 2002. L is measured as the average number of workers employed. Y and P are measured as index numbers equal to 100 in the year 2002. He fits the following regression (standard errors in parentheses):

$$lo\hat{g} L = -3.12 + 0.42 \log Y - 0.34 \log W - 0.11 \log P$$

(0.13) (0.09) (0.10) (0.06) (1)

The RSS of regression (1) turns out to be 1.99. He next regresses *L* on real output, Y/P, and real wages, W/P:

$$lo\hat{g} L = -2.56 + 0.46 \log \frac{Y}{P} - 0.32 \log \frac{W}{P}$$
(0.13) (0.07) (0.07) (2)

The RSS of regression (2) is 2.03. Finally he fits the following specification:

$$lo\hat{g}L = -3.12 + 0.42 \log \frac{Y}{P} - 0.34 \log \frac{W}{P} - 0.03 \log P$$
(0.13) (0.09) (0.10) (0.04) (3)

The RSS of specification (3) is 1.99. Explain why specification (2) is a restricted version of specification (1), stating the restriction. Perform a *t* test of the restriction. Note: $t_{5\%}^{crit} = 2.056$.

MASTER OF ARTS EXAMINATION, 2023

(1st Year, 1st Semester)

ECONOMICS

[ECONOMETRICS - I]

Time : Two Hours Full Marks : 30 Answer any *five* of the following questions: $6 \times 5=30$ 1. Let the loglikelihood function be $\ell(y,\theta) = \sum_{t=1}^{N} \ell_t(y^t,\theta)$, where y^t is the vector $(y_1, y_2, ..., y_1)'$, t = 1, 2, ..., N. Prove that $E_{\theta} [g(y,\theta)g'(y,\theta)] = \sum_{t=1}^{N} E_{\theta} [G'_t(y^t,\theta)G_t(y^t,\theta)]$,

where E_{θ} represents expectation with respect to DGP characterized by θ , a typical element of $g(y,\theta)$ is

$$g_i(y,\theta) = \frac{\partial \ell(y,\theta)}{\partial \theta_i} = \sum_{t=1}^N \frac{\partial \ell_t(y^t,\theta)}{\partial \theta_i}, \quad i = 1, 2, ..., K \text{ and}$$

 $G_t(y^t, \theta)$ is the *t*-th row of the matrix $G(y, \theta)$ with

typical element
$$G_{ii}(y^t, \theta) = \frac{\partial \ell_i(y^t, \theta)}{\partial \theta_i}$$
.

2. Consider the following model: $y_1 = z_1\delta_1 + \alpha_1y_2 + u_1$, where z_1 and z_2 are (row) vectors of regressors, δ_1 is

[Turn over

(column) vector of coefficients corresponding to z_1 , $z = (z_1, z_2)$, $E(z'u_1) = 0$ and y_2 is potentially endogenous. Regress y_2 on z_2 and obtain the fitted values as \tilde{y}_2 . Regress y_1 on z_1 , \tilde{y}_2 to obtain $\tilde{\delta}_1$ and $\tilde{\alpha}_1$. Show that $\tilde{\delta}_1$ and $\tilde{\alpha}_1$ are generally inconsistent and explain the reason.

- 3. Consider the least square estimates of the model: $y_{N \times 1} = X_{N \times K} \beta_{K \times 1} + u_{N \times 1}$, where E(u | X) = 0 and $E(uu' | X) = \Sigma = \sigma^2 (I + AA')$, where A is an $N \times m$ matrix with K < m < N. Assume, for simplicity, that σ^2 and A are known.
 - a) Obtain the variance of the OLS estimator of β .
 - b) Compare your answer in (a) with default OLS variance $\sigma^2 (X'X)^{-1}$. Are the default OLS standard errors biased/inconsistent in any particular direction?
 - c) Determine the variance of the GLS estimator of β , using the result $(I + AA')^{-1} = I_N - A(I_m + A'A)A'$.
 - d) Compare the default variance $\sigma^2 (XX)^{-1}$ of OLS with the true variance of GLS. Does your finding violate that fact that GLS must be BLUE when disturbances are non-spherical?

- 4. Let the model be $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + u$, where x_1, x_2 are non-stochastic and *u* satisfies all standard classical linear regression model properties. Run the regression of x_1 on a constant and x_2 and obtain the residuals \hat{v}_1 . Regress *y* on \hat{v}_1 alone. Prove that resulting estimate of the slope coefficient is $\hat{\beta}_1$.
- 5. Take a single draw of $Y \sim N(0, 1)$ and define a sequence of random variables, $\{X_N\}$, as follows:

 $X_N = \begin{cases} -Y & \text{if N is even} \\ Y & \text{if N is odd} \end{cases}$

Show that $X_N \xrightarrow{d} Y$ but not $X_N \xrightarrow{p} Y$.

6. Consider the following regression

$$y = X_1\beta_1 + X_1\beta_2 + u$$

where X_1 and X_2 are partitions of data matrix containing *n* observations each and K_1 and K_2 regressors, respectively. Prove that, $\hat{\beta}_2$ is equal to the set of coefficients obtained from OLS regression of $\hat{\epsilon}_1$ on $\hat{\epsilon}_2$, where ϵ_1 and ϵ_1 are defined as follows:

$$y = X_1 \theta_1 + \varepsilon_1, X_2 = X_1 \theta_2 + \varepsilon_2$$

7. A researcher has annual data on demand for labor, L, aggregate output in current prices, Y, average wages in