Bachelor of Arts Examination, 2023

(2nd Year, 2nd Semester)

ECONOMICS

[Microeconomics BII]
Time : Two Hours
Full Marks : 30
Answer any five of the following questions.
$6 \times 5=30$

1. Two firms, 1 and 2 , each produce a good which are perfect complements to each other. Both firms have monopoly power over own product, face marginal costs c_{1} and c_{2} and sell their output at prices p_{1} and p_{2}, respectively. The market demand for the composite good is $q=D(p), D^{\prime}<0$, where $p=p_{1}+p_{2}$. Suppose firm 1 chooses its price first, and takes into account the effect of its choice on firm 2's price. Show that $p=\frac{c}{(1-1 / \varepsilon)^{2}}$, where $c=c_{1}+c_{2}$ and ε is the elasticity of demand of the composite good.

6
2. Suppose consummer surplus is given by $U=\theta V(q)-T$; where $q=0,1$ or $2 ; V(0)=0, V(1)=1, V(2)=7 / 4$. Unit Production cost is $3 / 4$. There are two types of consumers: $\theta=1$ (proportion λ) and $\theta=2$ (proportion $1-\lambda$). Consumers may engage in personal arbitrage. Show that monopolist uses pure commodity bundling iff $\lambda<4 / 5$.
3. Suppose consumers have a linear demand function and are located uniformly from distance $x=0$ to $x=1$ from the plant where production of a monopolist takes place.
The transportation cost to distance x is $t x(t>0)$. The free on board (fob) price is the price that covers only production cost of the monopolist (i.e. transportation cost is borne by the consumer).
a) Calculate the optimal fob price when discrimination is allowed.
b) Compute the optimal uniform (i.e. nondiscriminatory) fob price when the entire market is served.
c) Which arrangement serves the largest market in general?
$2+2+2$
4. Consider the three-firm oligopoly where the (inverse) market demand is given by $P(Q)=a-Q$ and $Q=q_{1}+q_{2}+q_{3}$. Each firm has a constant marginal cost of production, c, and no fixed cost. The firms choose their outputs in the following sequence: firm 1 chooses $q_{1} \geq 0$; firms 2 and 3 observe q_{1} and simultaneously choose q_{2} and q_{3}. What is the subgame perfect oucome?
5. Give an example of a Nash equilibrium that is not a subgame perfect Nash equilibrium.
6. Consider the following normal form game

Player 1	C	D
A	6,6	2,7
B	7,2	0,0

Find the Nash equilibria of the game. Give an example of a public randomizing device that ensures a feasible payoff greater than that promised by the mixed strategy Nash equilibrium.
7. Players 1 and 2 each choose a number from the set $\{1,2,3\}$. If the players choose the same number then player 2 pays Re. 1 to player 1; otherwise no payment is made. Each player maximizes her expected monetary payoff. Find the mixed strategy Nash equilibrium of this game.

