Bachelor of Arts Examination, 2023

(1st Year, 1st Semester)

ECONOMICS

[Mathematical Methods in B1]

Time : Two Hours
Full Marks : 30
Answer question number $\mathbf{1}$ and any two from the rest.

1. a) Check whether the following statements are true or false (Give reasons for your answer).
i) The disjunct of two contingent propositions is never a contradiction.
ii) For the function $f(x)=4 \alpha x^{2}+\beta$ the condition $f^{\prime}(x)=0$ is both necessary and sufficient condition to identify the value of x for which $f(x)$ attains a maximum value.
iii) $f(x)=4 x^{3} y^{6}+3 x^{2} y^{4}+9$ is a homothetic function but not a homogeneous function.
iv) If you maximize the function $y=f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and a local maximum exists and the function is twice continuously differentiable then the third principal minor of the Hessian determinant will be positive evaluated at the point of local maximum.
v) A homogeneous function is always quasi concave.
b) i) Consider $\mathrm{S}=\mathrm{Z} . \quad \forall x, y \in \mathrm{~S} x \mathrm{R} y$ if $2 \mid(x+y)$. Show that R is an equivalent relation.
ii) Given the properties of a function below, identify the value of the function at relative maximum (if any), the relative minimum (if any) and the point of inflexion (if any):
$f: \mathbf{R} \rightarrow R ; f(3)=1, f(-3)=-1, f(0)=0$,
$f^{\prime}(3)=0, \quad f^{\prime}(-3)=0, \quad f^{\prime \prime}(x)>0 \forall x \in$
$(-\alpha, 0) f^{\prime \prime}(x)<0 \quad \forall x \in(0, \alpha)$. Give reasons for your answer.
$2+3=5$
2. a) Consider $f(x)=9-12 x+9 x^{2}-2 x^{3}$ (Domain: R). Identify the subdomains over which i) The function is concave and increasing, ii) Concave \& decreasing, iii) Convex $\&$ increasng, iv) Convex $\&$ decreasing. Identify the relative maximum \&/or relative minimum if they exist.
b) Find out and classify the critical points of the following function $f(x, y)=x^{3}+y^{3}-3 x y$. Also if there is a relative optimum check whether it is an absolute optimum.
c) Prove that convexity of a function is sufficient to establish it's quasi-convexity.
$4+4+2=10$
3. a) Prove that the tangent lines of the level curves of a homogenous function $f(x ; y)$ have constant slopes along each ray from the origin.
b) Find the optimal value(s) of f from the following constrained optimization problem:

Optimize $f(x, y, z)=x z+y z$ subject to $y^{2}+z^{2}=1$ $\& x z=3$.
$4+6=0$
4. a) Identify the relative minimum, relative maximum, saddle point of the following function (if they exist).

$$
f(x, y)=x^{3}+y^{3}+3 y^{2}-12 x-9 y
$$

b) Let $z=f(x, y)$ be a function, which is twice continuously differentiable. Write down the condition for quasi-convexity in terms of the bordered determinant. Prove that if the bordered determinant satisfies the sufficient condition for quasi-convexity, the bordered Hessian then must satisfy the $2^{\text {nd }}$ order sufficient condition for minimization given that the constraint function is linear.
$7+3=10$

