ME Power Engineering 1st yr. 2nd Semester Examination, 2017

Subject: Hydro Turbines

Time: Three hours

Full marks: 100

Answer any Five Questions

No.	of		Marks
questi	ons		
1.	a)	A Pelton turbine based hydro power plant produces 13,000kW power under a head of 250m when running at 430rpm. Calculate the number of nozzles required, the size of the jets, diameter of the wheel, number of buckets and specific speed if the overall efficiency is 84%. Consider speed ratio, jet ratio and velocity ratio as 0.46, 6 and 0.98 respectively.	15+5
	b)	State the significance of (NPSH) _{available} and (NPSH) _{required} .	
2.	a) b)	Design a Francis turbine runner using the following data: Head: 80m, Rotation speed: 750rpm, Power delivered: 375kW, Overall efficiency: 84%, Hydraulic efficiency: 93%, Ratio of inlet width to inlet diameter: 0.10, Flow coefficient: 0.15,. Also assume that 5% of the total flow area has been occupied by the blade thickness, radial flow at the exit and exit diameter is half of the inlet diameter of the runner. What are the functions of a draft tube?	16+4
3.	a) b)	Why the outlet of the draft tube of a reaction turbine is always immersed in tail water? A vertical divergent draft tube 5.6m long is provided to a Francis turbine. The diameters of the draft tube at inlet and exit are 50cm and 70cm respectively. The velocity of water at the exit of the draft tube is 1.25m/s. If the loss of energy in the draft tube is 0.25 times the kinetic head at exit, calculate the efficiency of the draft tube.	6+14
4.	a) b) c) d)	What do you mean by the intakes of a hydro power plant? What are main components of an intake? How the losses in the intakes are minimized? What are losses to be considered while designing the intakes?	3+4+6+7
5.	a) b)	What do you mean by the dead storage and live storage of a reservoir? Given below are the monthly rainfall P and the corresponding runoff	4+16
	b)	Given below are the monthly rainfall P and the corresponding runoff R values covering a period of 18 months for a catchment. Develop a	

		correlation	correlation equation between R and P							
		Month		R	Month	P	R	1		
		1	5	0.5	10	30	8.0			-
		2	35	10.0	11	10	2.3			
		3	40	13.8	12	8	1.6	_		
		4	30	8.2	13	2	0.0	-		
		5	15	3.1	14	22	6.5	_	:	
		6	10	3.2	15	30	9.4	1		
		7	5	0.1	16	25 8	7.6	-		
}		8 9	31	12.0 16.0	18	6	0.5	1		
				10.0	10	i	0.5	J		
6.	a)b)c)d)e)	With a neat diagram show the basic features of a small hydro power plant. Why anchor blocks are used for long penstocks? Based on what criteria penstocks are selected? What are the main components of a tubular turbine? Why surge tanks are essential for long penstocks? What is hydrograph? Show its different limbs with a neat sketch								5+3+3+3+ 6
7.	a) Discuss the Thesissen polygon method to find the average rainfall for a given catchment area. b) What are the different loads considered while designing a dam? What do you mean by water budget equation?							rainfall	6+4+4+2+ 4	
	d) e)	G4 - 4 - 41 - 6 41 6 111								
8.										
	•	1	collected	_	-		_			
		turbine based SHP (2x1.25MW) at different loads are tabulated below								20
		Item/Lo	ad		100%	80%	. (50%	110%	
		I -	ge (cumec	7	22.31	16.8		2.37	23.141	1
			at inlet (k		0.43	0.49),527	0.42	1
			<u> </u>					1,327 15	10	-
			of test (n		30	15				1
		1	reading (V	vn)	52.656	21.2		16.011	18.171	4
		CTR 400A/1A								
		VTR 3.3kV/110V								
		TWL (ri	ght bank)	, m	2.858	3.06	5 3	3.177	3.050	
		TWL (left bank), m 2.362 2.577 2.699 2.563								
		Center line of Penstock (Bench mark): 426.50m above MSL								1
		Level of pressure transmitter diaphragm: 428.55m above MSL								1
		Elevation of ULS (left bank): 428.889m above MSL								†
		Elevation of ULS (Right bank): 429.411m above MSL								4
		Density of water: 997.0kg/m ³								-
l		Density of water, 997.0kg/fil								

			····			1
		Accleration due to				
		Diamter of pensto				
		Draw the efficience				
9.	a)			-		
		What do you under	rstand by dar	n toe type of	f hydro plants? What are	
		the components a	3+3+3+12			
	b)	sketch of such a pla				
	- /	For a run-of-river	available throughout the			
		year related to the				
		The performance t				
		100%, 80% and 60)			
÷		and 71.7%. The SI				
		8.5cumnec water				
		the plant.			· ·	
		the plant.	Month	Discharge		
			1120111	(cumec)		
			January	6.22		
			February	30.866		
			March	31.004		
			April	37.776		
			May	10.995		
			June	5.594		
			July	51.796		
			August	68.679		
			September	162.766		
			October	74.044		
1			November	6.906		

December 0