Ref. No.: Ex/PG/MatE/T/128A/2017

M. TECH MATERIAL ENGG FIRST YEAR SECOND SEMESTER – 2017

Subject: HIGH TEMPERATURE MATERIALS

Time: 3 hrs.

Full Marks: 100

Use Separate Answer Scripts for Part A and Part B

Part - I Instructions: Answer any five questions

1		In the context of steels and there welds, briefly explain the causes and remedies of (a) hot cracking, (b) cold cracking.	10
2		Write short notes on any TWO of the following: (a) Stabilized grades of austenitic stainless steels. (b) Type IV cracking in ferritic steel weldments (c) Creep-fatigue design for steel welds (d) TBC (e) Ni-based ODS alloys	5 X 2
3	× 2	List the key concepts to make polymers thermostable as well as mechanically strong and chemically resistant.	10
4	. 17	What are the important characteristics for which alloys of refractory metals find use in high temperature applications? Give a few examples.	10
5		Summarize the basic principles of designing Ni-base super-alloys for high temperature structural applications.	10
6	100	Very briefly explain the process of casting single crystals of superalloys.	10
7		Briefly compare the important processing routes for production of ODS alloys.	10
8		Briefly compare CVD and PVD techniques for applying high temperature coatings.	

M.TECH. IN MATERIAL ENGINEERING 2ND SEM EXAMINATION, 2017

Subject: HIGH TEMPERATURE MATERIALS

Part: II	arks: 50
Answer Question 1 and any two questions from the rest	
1. Discuss the essential properties of high temperature oxide materials.	10
2. a) Define RUL. How do you determine the RUL?	2+8
b) Discuss the types of polymorphic transformation of silica. Write in a tabular form the polytransformation of silica.	ymorphic 6+4
3. a) Discuss the temperature dependent phase transformation of kaolinite, bentonite and fire clay upto 1000	
	12
b) Hot strength of silica bricks is excellent above 600°C. Explain	8
4. a) Discuss the effect of dihedral angle on the high temperature strength of magnesite bricks.	7
b) Discuss the temperature dependent variation of strength of magnesite bricks during heating and cooling	Gr.
	8
c) Discuss the stabilization of dolomite bricks.	5