Master of Mechanical Engineering Examination, 2017 Subject: Turbomachinery II

Time: Three hours Full Marks: 100

Answer any four questions

- 1. (a) What is an actuator disc? Discuss about actuator disc approach in 3 dimensional flow theory in turbomachines in contrast with radial equilibrium theory.
 - b) Discuss about blade row interaction effect showing that when δ/r is fairly small, interaction effects are strong. δ is the distance between two actuator discs and r, the radius of the disc.

[12+13]

- 2. a) Stating the assumptions made, work out the theoretical efficiency of a wind turbine.
 - (b) A wind turbine operates at sea level in a wind of 20 m/s. The wake velocity is measured at 8 m/s. Estimate the thrust on the turbine and power generated by it.
 - (c) For rocket propulsion in the absence of gravity, air or other resistances, show that the propulsive force is $\dot{m}u_r + \sum F = M\frac{dv}{dt}$

where u_r is the velocity of the jet relative to the rocket and usual meaning.

[10+7+8]

- 3 (a) Discuss about secondary flow as evidenced in axial flow turbomachines?
 - (b) With neat sketch show the performance characteristics of radial flow, mixed flow and axial flow pump and highlight the specific features for each of them.
 - (c) Plot typical efficiency versus percentage load curves for different types of hydraulic turbine highlighting any specific features for each of them.

(10+8+7)

- 4. (a) Discuss about radial equilibrium flow and hence deduce the radial flow equilibrium equation for an incompressible fluid in an axial-flow trubo-machine.
 - (b) The whirl distribution at entry to and exit from a compressor rotor is given by

$$C_{\theta l} = ar - a/r$$

 $C_{\theta 2} = ar + a/r$

where, a and b are constants.

Verify that, if the axial velocity remains unchanged in passing through the rotor, the degree of reaction is constant at all radii.

[12+13]

- 5. (a) Explain the importance of inlet velocity at the eye of pumps and compressors.
 - (b) Deduce the optimum conditions for the inlet velocity triangle in terms of hub-tip ratio.
 - (c)Arrive at the optimum design condition at inlet of a centrifugal pump in terms of suction specific speed, blade cavitation coefficient, inlet hub radius and inlet blade tip radius.

[6+10+9]

- 6. (a) Discuss about slip phenomenon and slip factor in pumps and compressors with particular reference to Stodola's slip factor.
 - (b) Air enters the diffuser of a compressor with a velocity of 300 m/s at a stagnation pressure of 200 kPa and a stagnation temperature of 200 C and leaves the diffuser with a velocity of 50 m/s. Using compressible flow relations and assuming the diffuser efficiency of 0.9, determine
 - i) the static temperatures at inlet and outlet of the diffuser
 - ii) the inlet Mach number and the static pressure at diffuser outlet and
 - iii) the increase in entropy caused by the diffusion process Take suitable value for γ and C_p for air.

[13+3x4]

- 7. Write short notes on the following
 - i) a) Centrifugal compressor stage and velocity diagrams at impeller entry and exit of the impeller and b) Radial-flow pump and velocity diagrams at impeller entry and exit
 - ii) Thermodynamic analysis of a centrifugal compressor impeller
 - iii) .Cavitation in turbo machines
 - iv) Shock at compressor inlet

[8+8+4+5]