MASTER OF MECHANICAL ENGINEERING EXAMINATION, 2017

(1st semester) TURBOMACHINERY I

Time: 3 hours

Full Marks 100

Answer any four questions.

Q.I

- a) With neat sketches classify different types of turbo-machinery according to the direction of flow through the rotor passage.
- b) Using a control volume for a generalized turbo-machinery, derive the Euler Work Equation
- c) Obtain the expression for Rothalpy and relative stagnation enthalpy.

[8+10+7]

-- Q.2

- a) With the help of enthalpy-entropy diagram explain small stage or Polytropic efficiency for a compression process and hence show that fir a compression process, the isentropic efficiency is less than the small stage efficiency.
- b) Define degree of reaction in a stage for both i) incompressible and reversible flow and ii) compressible and irreversible flow turbo-machine.
- c) Discuss about different dimensionless terms used in the analysis of incompressible flow turbo-machines.

[10+8+7]

0.3

- (a) Discuss about radial equilibrium flow and hence deduce the radial flow equilibrium equation for an incompressible fluid in an axial-flow trubo-machine.
 - (b) The whirl distribution at entry to and exit from a compressor rotor is given by

 $C_{\theta I} = \alpha r - \alpha / r$

 $C_{\theta 2} = ar + a/r$

where, a and b are constants.

Verify that, if the axial velocity remains unchanged in passing through the rotor, the degree of reaction is constant at all radii.

[12+13]

Q. 4

a) With the help of a neat sketch, show a typical compressor cascade geometry with the nomenclature.

b) Show that for a two dimensional incompressible flow through a stationary cascade of compressor blades, the cascade static efficiency is given by

$$\eta = 1 - \frac{2C_D}{C_L \sin 2x_m}$$

c) Using analysis of cascade forces deduce the expressions for C_L and C_D .

[8+10+7]

Q.5

- a) Using blade element theory as used in fan design, establish a relationship connecting pressure rise across the fan and the coefficient of Lift, blade angles and axial velocity component.
- (b)Discuss the mechanism of slip in radial flow impeller and derive an expression for it based on Stodola model.

[10+15]

0.6

- (a) With reference to axial flow turbo-machines. define and explain i) Design flow Coefficient, ii) Stage Loading Coefficient and iii) Stage Reaction
- (b) With the help of h-s and velocity diagrams, explain 50% reaction stage
- c) Discuss about effect of reaction on efficiency

[10+10+5]

- Q.7 Write short notes on any three of the following.
 - (a) Diffusion within blade row
 - (b)Co-Ordinate System and flow velocities within a turbo-machines
 - (c) Lift coefficient of a fan airfoil
 - (d)Off-Design performance of axial flow compressor
 - (e) Dimensionless quantities in compressible flow turbo-machines

[3x8]