MASTER OF MECHANICAL ENGINEERING EXAMINATION, 2017

(1st Semester)

THEORY OF ELASTICITY

Time: Three Hours

Full Marks: 100

Parts of the same question must be answered together Any missing data may be assumed with suitable justification

ANSWER ANY FOUR QUESTIONS

Q1. [8+12+5]

- (a) Derive the governing equations for finding principal stresses and the corresponding principal directions.
- (b) Given the six stress components σ_x , σ_y , σ_z , τ_{xy} , τ_{yz} and τ_{xz} with respect to the orthogonal reference frame x-y-z at any point O (Fig. 1b), derive the stress components for any rotated orthogonal reference frame X-Y-Z, for which the direction cosines are given as per Table 1b.
- (c) Show that the state of stress at any given point can be decomposed into hydrostatic and pure states of stress.

Table 1b: Direction Cosines

	x	y	z
X	$l_{\mathfrak{t}}$	m_1	n_1
Y	l ₂	m ₂	n_2
Z	l_3	m_3	n_3

O2. [8+14+3]

- (a) Show that the stress surface of Cauchy completely defines the state of stress at a point.
- (b) Show that the normal strain (ε) at any point in any given direction (direction cosines: l, m, n) is given by, $\varepsilon = \varepsilon_{xx}l^2 + \varepsilon_{yy}m^2 + \varepsilon_{zz}n^2 + \gamma_{xy}lm + \gamma_{yz}mn + \gamma_{xz}ln$.
- (c) Write down the equations of equilibrium in cylindrical coordinates.

Q3. [15+10]

(a) For plane elastic problems, show that the compatibility equation in terms of stress in polar coordinates is given

by,
$$\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right] (\sigma_r + \sigma_\theta) = 0.$$

(b) Considering a third degree polynomial function for Airy's stress function, determine the stress fields. Explain the case of pure bending of a thin rectangular plate and show it on the boundary using a neat sketch.

Q4. [4+17+4]

- (a) For torsion problem of straight prismatic bars, write down the governing equation and the associated boundary conditions, in terms of Prandtl's torsion stress function.
- (b) Show that, for torsion of an elliptic cross-section bar, the maximum shear stress occurs at the ends of the minor axis of the cross-section.
- (c) Write down the expressions of Lame's constants in terms of Young's modulus and Poisson's ratio. Express the general stress-strain relations in terms of Lame's constants.

Q5. [20+5]

- (a) For plane stress condition, determine the radial and circumferential components of stresses of a thick cylinder (having internal and external radii, r_i and r_o respectively) under uniform internal pressure p_i and external pressure p_o .
- (b) Briefly discuss the following: "The elasticity problem of a plate with a small hole under uniaxial tension can be formulated by considering two different problems of a circular disk, one under uniform external pressure and the other under varying external pressure".
- Q6. Write short notes on the following:

 $[5 \times 5]$

- (a) Field equations of elasticity
- (b) Volumetric strain
- (c) Components of strain in polar coordinates
- (d) Plane stress problems
- (e) Axisymmetric problems in elasticity

----X -----