5×5

5

20

M.E. Mechanical Engineering 1st Year 2nd Semester Examination, 2017

Subject: Control of Mechatronic Systems

Time: Three hours Full Marks: 100

Answer any FOUR questions.

- 1. a) What is the basis of evolving a fuzzy control and what kind of uncertainty is dealt by it?
 - b) Show typical variations of linear and singleton membership functions.
 - c) What are meant by the reaching phase and sliding phase in the context of SMC?
 - d) What are meant by an autonomous system and an LTI system?
 - e) What are meant by positive definite function and radially unbound function?
- 2. a) Explain the difference between crisp and fuzzy sets.

b) The Gaussian membership functions of the sum of the nondimensional error e and its rate de involve five sets, namely 1, 2, 3, 4 and 5, which have membership value of 1.0 respectively at -4.0, -2.0, 0, 2.0 and 4.0 and acquire membership value of 0.5 respectively at -3.0, -3.0, 1.0, 1.0 and 3.0. For the output variable u, the fuzzy sets are singleton membership value of 1.0 at -4, -2, 0, 2 and 4 for the subsets LN, N, Z, P and LP respectively. The rule base is: if x is i then u is i for i=1 to 5. Find the expressions

- for the membership functions of all the fuzzy sets.

 20
 3. a) What is meant by chattering in the context of sliding mode control?

 5
 - b) Consider a first order dynamic system $\dot{x}=u+d$, $u=\alpha \operatorname{sgn}(x)$, |d|< C and $\alpha>C$ where x,u and d are the output error, input signal and the disturbance respectively. For an initial point on the positive side of the x-axis in the $x-\dot{x}$ phase-plane, draw the system trajectory with proper explanations. Also determine the time to reach the sliding surface.

4. Consider a second order dynamic system $\ddot{x}=-\lambda\dot{x}+u+d$ and |d|< C, where x,u and d are the output error, input signal and the disturbance respectively and the initial state $x_o>0$, $\dot{x}_o=0$, $\ddot{x}_o=0$. With proper explanations, draw the system trajectory in the $x-\dot{x}$ phase plane with $\alpha>C$ for the input signal $u=\alpha\operatorname{sgn}(\dot{x}+\beta\operatorname{sgn}(x)\sqrt{|x|})$.

- 5. State and provide proofs for Lyapunov stability theorem and Lyapunov asymptotic stability theorem.
- 6. Using $V(x_1, x_2) = x_1^2 + x_2^2$ for each of the following system, show that the origin is asymptotically stable:

(a)
$$\dot{x}_1 = -x_1 + x_2^2$$
; $\dot{x}_2 = -x_2$,

(b)
$$\dot{x}_1 = (x_1 - x_2)(x_1^2 + x_2^2 - 1)$$
; $\dot{x}_2 = (x_1 + x_2)(x_1^2 + x_2^2 - 1)$.

Can the second system be globally asymptotically stable?