MASTER OF MECHANICAL ENGG. EXAMINATION, 2017 (1st Semester)

CONTACT MECHANICS

Time: Three hours Full Marks: 100

Missing data, if any, may be assumed.

Answer any five questions. All parts of same question must be answered together.

- 1. a) A rigid sphere is in contact with an elastic half-space. Estimate qualitatively the contact force in terms of penetration depth for both elastic and plastic deformation of the half-space.
 - b) Consider the contact between a rigid plane and a thin elastic spherical cap which is bound to another rigid plane. Use uniaxial deformation approximation to determine the qualitative relation between contact force and depth of penetration.

10+10

- 2. Consider a thin, round, elastomer sheet with a radius R and thickness h to be in contact between two rigid planes. Elastomer may be assumed to be incompressible. Determine the force-displacement relationship, the effective modulus of elasticity, and the shear stress distribution in a contact plane for the following two cases:
 - a) the sheet sticks to two rigid planes on both sides
 - b) the sheet sticks to one surface and slides without friction on the other. 10+10
- a) Explain Hertz contact problem. For this, derive the expressions for contact force and contact radius.
 - b) Estimate the maximum pressure and the size of the contact area in a steel rail-wheel contact where the maximum load per wheel is around 10⁵ N for cargo trains and the wheel radius is 0.5 m.

 10+10

P.T.O.

Page 1 of 2

- 4. a) Consider an impact of an elastic sphere with a flat plane. Determine the contact time and maximum contact pressure.
 - b) Explain G-W model of contact of rough surfaces with its limitations.

10+10

- 5. a) Explain adhesive contact. Why is adhesion not so prominent in normal engineering applications?
 - b) Draw and explain the load-displacement relation for contacting solids following JKR adhesive contact.
 - c) Derive JKR equation for contact load and contact radius

5+5+10

- 6. a) What is depth sensing indentation?
 - b) Draw and explain typical load-displacement curve in depth sensing indentation.
 - c) Explain how unloading curve can be used to determine the combined elastic modulus.

 4+8+8
- 7. a) Explain what is meant by hardness. Explain the expanding cavity model of hardness.
 - b) Explain Brinell hardness and Vickers diamond hardness measurements.

10+10

- 8. Write short notes on (any Four):
 - a) Asperity interaction
 - b) Plastic asperity concept (PAC) model
 - c) Kogut-Etsion elastic-plastic contact
 - d) Indentation size effect
 - e) Plasticity Index
 - f) Maugis-Dugdale model

5 x 4

Page	2	01	2