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Chapter 1. Introduction 

 

1.1 Introduction 

Most engineering components fail due to fatigue (G.Dieter, 1961). The fatigue damage 

shows no visible warning before failure.Fatigue is quite structure sensitive, it not only 

depends on the specimen shape and size (Shuhei NOGAMI, Yuki SATO, 2010) but on 

the microstructure(Hideaki Shibata, Hirohisa Shiota, 1996) also. Rigorous testing for 

fatigue life is not always possible for every possible specimen geometry, and there comes 

the necessity of Finite Element (FE) simulation. In FE simulations, the specimen 

geometry need no restriction and the process is quite cost effective and time saving with 

comprehended strategic modelling. 

Prediction of fatigue life for a component in FE simulation requires accurate calculation 

of deformation and carefully constructed constitutive relations. Standard FE software 

calculate the deformation with a reliable accuracy (ABAQUS Manual, v6.8). On the other 

hand, the user can choose or design the constitutive relations for a material behaviour,and 

there inevitably comes the in-depth understanding of the microstructural behaviour of the 

material. In present days, modeling of the material behavior is becoming increasingly 

important in predicting possible failure conditions in engineering components and 

consequently, optimization of their design. 

The material, 20MnMoNi55 low alloy steel, is a designed RPV material with high 

fracture toughness, strength and ductility (M. S. E1-Fadaly, T.A. E1-Sarrage, A.M. 

Eleiche, W. Dahl, 1995). The typical application (nuclear reactor pressure vessel) of the 

material may involve cyclic loading during start up or shut down sequence or due to 

seismic activity. The material may experience plastic loading at microstructural level 

(near a stress concentration point like micro-crack, inclusion, grain boundary etc.) even 

for a low loading amplitude. Therefore, study of the low cycle fatigue behaviour of the 

material is a safety-critical issue. 

1.2 Fundamentals of Cyclic Plasticity 

Early in the 19th century the concept of fatigue draws the attention of researchers working 

mainly on mining and railway industries. The first known contribution is made by a 

German 

engineer, named W. A. J. Albert in 1837 (Pook, 2007) devised a testing machine for hoist 

chains used in mines and published the first article on fatigue. The first fatigue test results 

published in English appear to be those by Fairbairn (1864) on repeated bending fatigue 

tests on beams. Rankine (1842) recognized the importance of stress concentrations during 

investigation of the Versailles Train Crash incident. Braithwaite (1854) reported common 

service fatigue failures and coined the term ‘fatigue’. Ewing (1903) demonstrated the 

origin 
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of fatigue failure in microscopic cracks. Basquin (1910) proposed a log-log relationship 

for S-N curves, using Wöhler’s (1870) test data. Miner (1945) popularized Palmgren’s 

(1924) linear damage hypothesis as a practical design tool for fatigue. If applied load 

amplitude is low enough to deform the material only elastically, the material 

survives a large number of cycles, and known as 'High Cycle Fatigue' (HCF).Fatigue is 

the localized and progressive structural damage. The fatigue damage is cumulative and 

the materials do not recover when relieved (Palmgren, 1924; Miner, 1945). Eventually a 

crack will grow unto a critical size and then propagates suddenly to catastrophic fractures. 

For quasi-static loading (with low strain-rate at room temperature and in the standard 

environment), if the applied cyclic load is high enough to deform the material irreversibly 

(plastically), it survives relatively low number of cycles, and known as 'Low Cycle 

Fatigue' (LCF). LCF as a material failure process has received much attention since the 

early work of Manson (1953) and Coffin (1954) where they explained fatigue crack-

growth in terms of plastic strain in the tip of cracks. 

1.2.1 Experimental Observations for symmetric uniaxial loading 

It is observed and experienced that fatigue damage involving plasticity (LCF) grows 

faster and shows different stress-strain behaviour during the fatigue life (G. Dieter, 1961) 

before catastrophic failure. These material responses are of practical interest in design of 

power plant and other engineering components, as sometimes, they indicate the 

symptoms of any secondary damage mechanism evolved and influencing the fatigue life. 

1.2.1.1 Bauschinger effect 

The common experimental observations of cyclic plasticity for metals that stress-strain 

behaviour shows a closed hysteresis loop with reduction in strength after load reversal, 

called Bauschinger effect (Bauschinger, 1881 and 1886). 

If the yield limit is marked asσy, then the material during unloading from maximal axial 

stress state σ1 behaves elastically up to the point, where the difference between maximal 

and immediate stress σ1 – σ2 is equal to the double of yield limit 2σy 

 
Fig.1.1: Presentation of Bauschinger effect. 
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Kinematic hardening (KH) rules are designed to model closed stress-strain hysteresis 

loops with Bauschinger effect.  

1.2.1.2 Cyclic hardening/softening 

Results of the micro structural changes in the beginning stage of cyclic loading are 

changes of physical properties and stress response in the material. Cyclic 

softening/hardening effect relates to softening/hardening of material response or 

decreasing/increasing of resistance against material deformation under cyclic loading. Its 

intensity usually decrease with number of cycles until the saturated state is reached. 

During uniaxial cyclic loading, the condition is characterized by closed hysteresis loop. 

Transient responses in initial cycles caused by cyclic hardening/softening under plastic 

strain control and stress control are shown at the fig.2 

 
Fig.1.2: Uniaxial fatigue test material response: a) cyclic softening and b) cyclic hardening under plastic 

strain controlled loading and c) cyclic hardening and d) cyclic softening under stress controlled loading. 

Some materials show very strong cyclic softening/hardening (stainless steels, cooper, 

etc.)some less obvious (structural steels). There can be also notable cyclic hardening in 

certain cycles range and in the remaining lifetime cyclical softening. Properties of cyclic 

hardening/softening don‘t depend only on material microstructure, but also on loading 

amplitude or more generally on previous strain history. Such transient behavior of 

material makes accurate stress-strain modeling more difficult. There is very often 

mentioned possibility of transient stress-strain behavior estimation according to its 

strength limit and yield limit ratio, but also very simple hypothesis is used, claiming that 

hard material cyclically softens whereas soft material cyclically hardens. 
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1.2.1.3Masing behavior 

A material obeys Masing behavior (Masing, 1923; Elline and Kujawaski, 1984; Wang 

and Laird, 1988) when the upper branches of hysteresis loops with different strain ranges 

after alignment in lower peaks overlap. More accurately, in the ideal case, single solid 

curve is created. From microscopic point of view Masing behavior indicates stable 

microstructure in fatigue process. Most steel materials haven’t Masing behaviour. Some 

engineering materials show Masing behaviour under certain testing conditions. As can be 

seen from the Fig.3, where the upper branches of hysteresis loops of the investigated 

material displays non-Masing behaviour depending on the amplitude of plastic strain. 

 
Fig.1.3:Schematic representation of non-Masing behaviour and Masing behaviour. 

For different complexity in loading condition and for different geometry the material may 

show many different stress-strain behaviour. 

1.2.2 Constitutive modeling for symmetric uniaxial loading 

Different cyclic behaviours are observed and documented in the last a few decades of 

rigorous research for different materials. At the same time, an even more meticulous 

effort was given to model the phenomena mostly from phenomenological and 

thermodynamic point of view.  

Cyclic plasticity is considered as one of the most critical structural problems to be 

simulated. And in the context of constitutive modelling, the development of kinematic 

hardening rule is enormous benchmark in the history of cyclic plasticity modelling. But, 

some of the cyclic plasticity behaviour of materials are best modelled by isotropic 

hardening mechanisms, like cyclic hardening/softening, non-proportional hardening etc. 

1.2.2.1 Basics of incremental theory of plasticity 

For a homogeneous, isotropic and linearly elastic material, the plasticity analysis of the 

material is introduced by a suitable yield criterion 𝜎𝑒𝑞 = 𝜎0. Here, 𝜎𝑒𝑞 is the equivalent 

stress and 𝜎0is the initial yield stress. Mathematically,  𝜎𝑒𝑞 − 𝜎0 = 0 repeats the same 

condition with a function on the left hand side, known as the yield function 𝜙.  
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Beyond the elastic limit, where small displacement and small strain (less than 5% strain ) 

analysis is applicable, the incremental total strain can be additively decomposed (even 

when large rigid body rotations are involved with small strains, this simple algebraic 

decomposition of strains does not yield accurate results) into elastic and plastic strain 

components(𝑑𝜀𝑖𝑗
𝑡𝑜𝑡 = 𝑑𝜀𝑖𝑗

𝑒 + 𝑑𝜀𝑖𝑗
𝑝 ). Therefore, a general approach to find out actual state 

of stress at any instance is by applying generalized Hooke’s law on the elastic part of the 

strain and mathematically, 

 𝜎𝑖𝑗 = 𝜎𝑖𝑗
0 + 2𝜇 (𝑑𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝑑𝜀𝑖𝑗
𝑝 ) + 𝜆 𝑑𝜀𝑘𝑘

𝑡𝑜𝑡  (1.1) 

Where, 𝜎𝑖𝑗
0  is the state of stress obtained at last converged time step and, 𝜇 and 𝜆 are tow material 

parameters (called Lame’s parameters). As for metallic material, it is observed that, the 

incompressible plasticity assumption holds good (plastic deformation is purely deviatoric, 

(𝜀𝑖𝑗
𝑝 𝛿𝑖𝑗 = 0)) and therefore, von-Mises yield criterion is widely applicable. As a result, 𝑑𝜀𝑘𝑘

𝑡𝑜𝑡  is 

purely elastic∑( 𝑑𝜀11
𝑒 +  𝑑𝜀22

𝑒 +  𝑑𝜀33
𝑒 ). 

Incompressibility hypothesis endorse no effects of the hydrostatic stress component on 

yielding and the plastic deformation. Hence, the distortion energy criterion is considered 

suitable in this case. In its simplest form, in case of perfectly plastic (no hardening) 

incompressible material, the von-Mises yield function is read as:  𝜙 = 𝜎𝑒𝑞 − 𝜎0 =

[
3

2
𝑆𝑖𝑗𝑆𝑖𝑗]

1 2⁄

− 𝜎0,  where, 𝑆𝑖𝑗 are the deviatoric stress components or reduced state of 

stress. The yield function is represented by an open cylinder of radius 𝜎0, on π-plane in 

the deviatoric stress space. 

For the work hardening material (metals), the complete quantification of the plastic strain 

is dependent on the hardening characteristics of the material. Hill (1950) assumed that the 

resistance to the distortion is measured by the isotropic expansion of yield surface during 

plastic flow retaining its shape and position with respect to the hydrostatic state of stress. 

On the other hand, Prager (1955, 1956) proposed a different hardening rule which 

considers the yield surface can move in the stress space in any direction of strain 

increment retaining its shape and size. Considering both the hardening mechanisms, the 

von-Mises yield function becomes: 

 𝜙 = [
3

2
(𝑆𝑖𝑗−𝛼𝑖𝑗)(𝑆𝑖𝑗−𝛼𝑖𝑗)]

1 2⁄

− 𝜎𝑐  =  0 (1.2) 

here, 𝛼𝑖𝑗  are deviatoric back stress components respectively. Current yield stress 𝜎𝑐  is 

additively decomposed into initial yield stress (𝜎0) and isotropic hardening/softening (𝑅). 

The hardening rules specifically describe the evolutions of isotropic hardening stress 

and/or back stress (kinematic hardening) components.  
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For work-hardening materials, Hill (1950) developed the complete stress-strain equation 

in a more general manner as: 

𝑑𝜀𝑖𝑗 = [
𝑑𝑆𝑖𝑗

2𝐺
+

(1 − 2𝜈)

𝐸
𝛿𝑖𝑗  𝑑𝜎𝑚] + [

3

2
𝑆𝑖𝑗

𝑑𝜀𝑒𝑞
𝑝

𝜎𝑒𝑞

]. 

Contemporarily, for plastic deformation of the perfectly plastic (neutrally stable) or strain 

hardening (stable) material, Drucker (1950, 1951, 1959) proposed a stability postulate, 

which is represented as:𝑑𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝑝

≥ 0. The postulate practically restricts the possibility of 

material softening and hence instability. Drucker’s postulate is broader than the statement 

summarizes. It confirms the convexity of yield surface and suggests the maximum plastic 

dissipation (von-Mises, 1928; Taylor, 1947; and Hill, 1948). Consequences of the 

maximum plastic dissipation postulate are of the highest importance in the plasticity 

theory. The normality of the plastic flow direction to the potential surface can be directed 

from the principle of maximum plastic dissipation. 

The possibility and direction of plastic strain increment (plastic flow) for strain-hardening 

material is generally directed by the flow rule. The possibility and quantification of the 

plastic flow is ascertained by a non-negative scalar (𝑑𝜆) similarly as in Prandtl-Reuss 

equation. It can be shown that the plastic multiplier is actually the equivalent plastic strain 

increment. Though, the complete quantification of the plastic strain magnitudes are 

dependent on the specific hardening rules and consistency condition. From the normality 

rule, the direction of the plastic flow, called the flow vector (𝑛𝑖𝑗)in plasticity analysis, is 

determined by the gradient of the potential surface in the stress direction. For von-Mises 

plasticity for metals, the flow rule is called the associative or associated flow rule when 

the yield surface is identical to the potential surface. The equation of the associated 

plastic flow is finally written as: 

 𝑑𝜀𝑖𝑗
𝑝

= 𝑑𝜆
𝜕ϕ

𝜕𝑆𝑖𝑗
 (1.3) 

The consistency condition implies that the plastic deformation occurs for the state of 

stress is to be in such a way that their equivalent always lies on the revised yield surface. 

The hypothesis enables the quantification of the plastic multiplier (dλ) for associated 

flow.  

The condition is mathematically presented as: 𝜙 + 𝑑𝜙 = 0, in yielded condition, 𝜙 = 0, 

therefore, 𝑑𝜙 = 0 and expressed as: 

 𝑑𝜙 =
𝜕𝜙

𝜕𝑆𝑖𝑗
𝑑𝑆𝑖𝑗 +

𝜕𝜙

𝜕𝛼𝑖𝑗
𝑑𝛼𝑖𝑗 +

𝜕𝜙

𝜕𝜎𝑐
𝑑𝜎𝑐 = 0 (1.4) 

The plastic modulus is of great importance when the equivalent plastic strain increment 

(𝑑𝜀𝑒𝑞
𝑝 ) is computed using Newton iterative method in numerical simulations.  
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The plastic modulus is formulated from the consistency condition (𝑑𝜙 = 0)conforming 

associative flow rule(𝑑𝜀𝑖𝑗
𝑝

= 𝑑𝜆
𝜕𝜙

𝜕𝑆𝑖𝑗
)and incorporating the specific hardening laws as: 

 ℎ = 𝑛𝑖𝑗

𝑑𝑆𝑖𝑗

𝑑𝜀𝑒𝑞
𝑝 = 𝑛𝑖𝑗

𝑑𝛼𝑖𝑗

𝑑𝜀𝑒𝑞
𝑝 +

𝑑𝜎𝑐

𝑑𝜀𝑒𝑞
𝑝  (1.5) 

where, 𝑛𝑖𝑗  =  
𝜕𝜙

𝜕𝑆𝑖𝑗
 =  

3

2

𝑆𝑖𝑗

𝜎𝑒𝑞
 and, 𝑑𝜀𝑒𝑞

𝑝
 = [

2

3
𝑑𝜀𝑖𝑗

𝑝
𝑑𝜀𝑖𝑗

𝑝 ]
1 2⁄

. In case of cyclic plasticity 

kinematic hardening rules are required to simulate stress-strain hysteresis loop along with 

the Bauschinger effect. The non-Masingbehaviour can also be addressed by varying the 

kinematic hardening parameters. Though sometimes, when the material is only non-

Masing at the elastic limit, the behaviour can be captured introducing isotropic hardening 

rule. Though the primary objective of incorporating isotropic hardening is to simulate 

cyclic hardening/softening behaviour. In case of saturated loops, it is observed that, the 

cyclic hardening/softening gets saturated, there kinematic hardening alone can simulate 

the stress-strain hysteresis loop accurately. In the subsequent analysis later, the specific 

kinematic hardening law suitable for the material and its parametric quantification are 

discussed. 

1.2.2.2 Kinematic hardening model 

Translation of the yield surface in the deviatoric stress space known as the kinematic 

hardening mechanism. The most of the cyclic plasticity phenomena are modelled by 

modifying the kinematic hardening rule. In the following sections, a brief history of such 

modifications are presented.  

The standard kinematic hardening rules include the forest pile-ups of dislocations as 'back 

stress' and the effect of annihilated mobile dislocations causing some recovery of the back 

stress is generally included in the ‘dynamic recovery’ term. The concept of KH rule is 

materialized first in the work of Prager (1956). 

1.2.2.2.1Linear kinematic hardening rule - Prager’s model 

Prager (1955) proposed the linear kinematic hardening model which assumes collinear 

relation between increments of the back stress (kinematic variable) components(𝑑𝛼𝑖𝑗) 

and the increments of the plastic strain components(𝑑𝜀𝑖𝑗
𝑝

). 

 𝑑𝛼𝑖𝑗 =
2

3
𝐶 𝑑𝜀𝑖𝑗

𝑝
 (1.6) 

The initial hardening modulus,𝐶, is temperature dependent material parameter. The yield 

surface, under applied load which causes the plastic deformation, translates to a new 

location. The initial center is translated by equivalent back stress𝛼. 
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Fig.1.4: Evolution of the linear kinematic hardening model 

The Prager’s model is schematically illustrated in Fig.1.A specimen which is firstly 

loaded up to the point 𝐵 and then unloaded and loaded in the reverse direction until the 

point 𝐵’. Both the elastic and the plastic deformations occur in the point 𝐵 while only the 

elastic deformation appears between the points 𝐵 and  𝐵’ . However, the elasto-plastic 

deformation occurs again when an applied load passes the point 𝐵’further. Radius of the 

yield surface is equal to the initial yield stress confirming that the linear kinematic 

hardening model is able to capture the Bauschinger effect.  

The main advantage of this model is having only one material parameter, 𝐶.The linear 

KH rule by Prager (1956) simulates the Bauschinger effect with a closed hysteresis loop 

but it fails to simulate the non-linearity of the material response in the post-elastic regime. 

For improved simulation of the non-linear stress-strain curve many attempts were made. 

Overlay modelby Besseling(1958) is most considerable amongst them. The model 

proposes a multilinear construction but lacks the physical significance. Instead, the model 

with a single yield surface with a non-linear evolution equation of internal variables 

provides physical significance and results in more robust outcome in simulation. The non-

linear kinematic hardening rules became widely popular. 

1.2.2.2.2 Non-linear Armstrong-Frederick (AF)model 

Armstrong and Frederick (1966) proposed that back stress components are the results of 

two different micro-mechanisms namely hardening and dynamic recovery of internal state 

variables which is dependent on the effective plastic deformation and the state of back 

stress. The increment of the back stress components are:  

 𝑑𝛼𝑖𝑗 =
2

3
𝐶 𝑑𝜀𝑖𝑗

𝑝
− 𝛾 𝛼𝑖𝑗𝑑𝜀𝑒𝑞

𝑝
 (1.7) 

Where 𝐶  and γare material parameters. The quantity 𝑑𝑝 is an increment of equivalent 

plastic strain, expressed as:𝑑𝜀𝑒𝑞
𝑝

= √
2

3
 𝑑𝜀𝑖𝑗

𝑝
 𝑑𝜀𝑖𝑗

𝑝
. 
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A proportional stress raiser by dislocation pile-ups may be apprehended by the first term 

on the right hand sides of Eq.1.7, as observed identical to the Prager model. When a 

material is loaded beyond its yield limit, microscopically, a large number of dislocations 

are activated by generation and multiplication at different sources, like, grain and sub-

grain boundaries, pinned dislocations, impurities, and other kind of defects etc. As plastic 

deformation continues, the probability of mobile dislocations being tangled with each 

other and caught up in the dislocation forest increases exponentially as more slip systems 

get activated. The entanglement of mobile dislocations at different sites resist the easy 

glide of dislocations, cumulatively resulting the macroscopic hardening. 

Transmission Electron Microscope (TEM) micrographs can show, other than 

entanglement, when dislocations of opposite signs interact, they both get annihilated 

(Essmann and Mughrabi, 1979) reliving the stored energy and space for remaining 

dislocations to glide easily without barrier. Movable dislocations within a slip system 

(slip direction and plane) when interact with each other and dislocations of opposite signs 

annihilate, the process is designated as ‘dynamic recovery’. The second term on the right 

hand side of the Eq.1.7 gives the dynamic recovery contribution for Armstrong-Frederick 

KH model. Any kinematic hardening (KH) rule used in the material modelling, now a 

days, are equipped with the hardening term that handles the dislocation generation and 

pile ups and a  recovery term mainly capture the annihilation of movable dislocations 

within the active slip systems.  

For the uniaxial loading case, the von Mises yield condition becomes to the simpler form. 

Similarly we can modify nonlinear kinematic hardening rule if we will consider only 

deviatoric part of the equation (1.7) taking into account plastic incompressibility. Then 

the nonlinear kinematic hardening rule leads to the differential equation𝑑𝛼 = 𝐶𝑑𝜀𝑝 −

𝛾𝛼|𝑑𝜀𝑝|. To dispose of the absolute value of 𝛼, a multiplier 𝜓 = ±1can be used and the 

Eq.1.7 becomes: 

𝑑𝛼 = 𝐶 𝑑𝜀𝑝 − 𝛾 𝛼 |𝑑𝜖𝑝| = 𝐶 𝑑𝜀𝑝 − 𝜓 𝛾 𝛼 𝑑𝜀𝑝 

Separating the variables,∫
𝑑𝛼

𝐶−𝜓𝛾𝛼

𝛼

𝛼0
= ∫ 𝑑𝜀𝑝

𝜀

𝜀0
and integrating, we get: 

𝛼 =
𝐶

𝛾
+ (𝛼0 − 𝜓

𝐶

𝛾
) 𝑒−𝜓𝛾(𝜀𝑝−𝜀𝑝0)                              (1.8) 

Therefore, the relation for stress is given by yield condition 𝜎 = 𝛼 + 𝜓𝜎𝑦 . For tension 

𝜓 = +1 and considering zero initial values of plastic strain (𝑑𝜀𝑝
0 = 0)and back stress 

(𝑑𝛼0 = 0), theEq.1.8 becomes𝜎 = 𝜎𝑦 +
𝐶

𝛾
(1 − 𝑒−𝛾𝜀𝑝). Now, we can investigate the limit 

values of the nonlinear function and its first derivation to get a concept about influence of 

parameters C and γ on stress – strain response of the Armstrong-Frederick model: 

𝑙𝑖𝑚
𝜀𝑝→0

𝐶𝑒−𝛾𝜀𝑝 = 𝐶and, 𝑙𝑖𝑚
𝜀𝑝→∞

𝜎𝑦 +
𝐶

𝛾
(1 − 𝑒−𝛾𝜀𝑝) = 𝜎𝑦 +

𝐶

𝛾
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Described nonlinear kinematic hardening model allows to correctly capture Bauschinger 

effect and even behavior by nonsymmetrical loading in tension-compression. The big 

advantage of Armstrong-Frederick model is its easy implementation despite the nonlinear 

behavior. 

 
Fig.1.5: Properties of the nonlinear kinematic hardening model of Armstrong-Frederick. 

On the other hand, the model cannot describe the hysteresis loop shape precisely. For the 

case of cyclic loading the parameters 𝜎𝑦 , 𝐶  and 𝛾should be estimated from the cyclic 

strain curve. It is possible to determine the equation corresponding to the cyclic curve of 

Armstrong-Frederick model by application of equation (1.8) for the upper branch and the 

bottom branch of hysteresis loop. For tension 𝜓 = 1 is valid and we have: 

 𝛼𝑚𝑎𝑥 =
𝐶

𝛾
+ (𝛼𝑚𝑖𝑛 −

𝐶

𝛾
) 𝑒−𝛾(𝜀𝑝−𝜀𝑎𝑝)         (1.9) 

For the compression (𝜓 = −1) similarly, 

𝛼𝑚𝑖𝑛 = −
𝐶

𝛾
+ (𝛼𝑚𝑎𝑥 +

𝐶

𝛾
) 𝑒𝛾(𝜀𝑝−𝜀𝑎𝑝)                              (1.10) 

Substituting Eq.1.9 into Eq.1.10, 𝜎𝑎 = 𝜎𝑦 +
𝐶

𝛾
𝑡𝑎𝑛ℎ(𝛾𝜀𝑎𝑝) , where, 𝑡𝑎𝑛ℎ(𝑥)  is the 

hyperbolic tangent function and 𝜎𝑎 , 𝜀𝑎𝑝are stress amplitude and plastic strain amplitude 

respectively. 

Single surface non-linear Armstrong-Frederick KH model shows rudimentary simulations 

of the stress-strain hysteresis curvature and over-predictions in the uniaxial ratcheting 

response. 

1.2.2.2.3Chaboche model – Segmented Armstrong-Frederick rule 

Chaboche and his co-workers (1979, 1989, 1991, and 1994) proposed a ‘decomposed’ 

nonlinear kinematic hardening rule. Chaboche kinematic hardening rule is a superposition 

of several Armstrong-Frederick hardening rules.  
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The total back stress, through superposition of 𝑚 segments, is: 

 𝑑𝛼𝑖𝑗 = ∑ 𝑑𝛼𝑖𝑗
𝑘

𝑚

𝑘=1

 (1.11) 

Where, each segment evolves according to the Armstrong and Frederick rule for material 

parameters 𝐶𝑘 and 𝛾𝑘  for 𝑘𝑡ℎsegment: 

 𝑑𝛼𝑖𝑗
𝑘 =

2

3
 𝐶𝑘  𝑑𝜀𝑖𝑗

𝑝
− 𝛾𝑘  𝛼𝑖𝑗

𝑘  𝑑𝜀𝑒𝑞
𝑝

 (1.12) 

A stable hysteresis curve can be divided into three critical segments. The initial high 

modulus at the onset of yielding, the constant modulus segment at a higher strain range 

and the transient nonlinear segment. Accordingly, the first rule (𝑑𝛼𝑖𝑗
1 )  should start 

hardening with a very large modulus and stabilizes very quickly. The second rule (𝑑𝛼𝑖𝑗
2 ) 

should simulate the transient nonlinear portion of the stable hysteresis curve. Finally, the 

third rule (𝑑𝛼𝑖𝑗
3 )should be a linear hardening rule (𝛾3 = 0)to represent the subsequent 

linear part of the hysteresis curve at a high strain range. If this scheme is followed, the 

simulation for a stable hysteresis loop improves. Chaboche model has a tendency to over-

predict uniaxial ratcheting rates during initial cycles and over-predicts the biaxial cases to 

a large extent. Chaboche (1991) added a fourth hardening rule with a concept of 

‘threshold’ in his model. This kinematic hardening rule grows linearly to a certain 

‘threshold’ stress level and subsequently hardens according to the Armstrong-Frederick 

rule. It is observed that the incorporation of a fourth rule improves the stable hysteresis 

loop simulation, but the ratcheting simulations for both uniaxial and biaxial experiments 

do not improve that much. 

Due to the usage of Armstrong-Frederick evolution law we can directly write the 

expression for static strain curve 

𝜎 = 𝜓𝜎𝑦 + ∑ 𝜓
𝐶𝑖

𝛾𝑖
+ (𝛼0

(𝑖)
− 𝜓

𝐶𝑖

𝛾𝑖
) 𝑒−𝜓𝛾𝑖(𝜀𝑝−𝜀𝑝0)

𝑀

𝑖=1

 

 

(1.13) 

and for cyclic strain curve𝜎𝑎 = 𝜎𝑦 + ∑
𝐶𝑖

𝛾𝑖

𝑀
𝑖=1  𝑡𝑎𝑛ℎ(𝛾𝑖 𝜀𝑎𝑝). The quality of cyclic strain 

curve description is adequate in the case of Chaboche model within the three evolution 

parts. Due to the similar properties of functions 𝑡𝑎𝑛ℎ(𝑥) and 1 − 𝑒𝑥𝑝(−𝑥), including its 

derivatives, it is possible to use the same approach for parameter estimation from the 

monotonic even cyclic strain curves. Parameters should be determined, for example, by a 

nonlinear least-square method. It is useful to consider Prager’s rule for the last back stress 

part (𝛾𝑀 =  0), the parameter influence ratcheting and mean stress relaxation effects. 

Therefore, we can use this approximation function for both cyclic and monotonic strain 

curves respectively as: 

𝜎𝑎 = 𝜎𝑦 + ∑
𝐶𝑖

𝛾𝑖

𝑀−1
𝑖=1 𝑡𝑎𝑛ℎ(𝛾𝑖 𝜀𝑎𝑝) + 𝐶𝑀𝜀𝑎𝑝and, σa = σy + ∑

Ci

γi
(1 − e−γiεp)M−1

i=1 + CMεp. 
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When the cyclic strain curve of the investigated material is not available, it is possible to 

use for the calibration of the model also large saturated hysteresis loop. Based on Eq.1.13, 

considering tension (𝜓 = 1) and these initial values (Fig.1.7)𝛼0
𝑖 = −

𝐶𝑖

𝛾𝑖
and𝜀𝑝0 = −𝜀𝑎𝑝. 

We can get the expression for the upper branch of the hysteresis loop as: 

σ = σy + ∑
Ci

γi

(1 − 2e(−γiεp−(−εap))

2

i=1

+ C3εp 

.In the Chaboche model the parameter γM influences ratcheting (provided that the last 

back stress part has the lowest value of the parameter γi) and is chosen to be small (up to 

𝛾𝑀 = 10). For the case of 𝛾𝑀 = 0  ratcheting cannot occur. However, after particular 

number of cycles the stabilized hysteresis loop will be formed (the Chaboche model tends 

to plastic shakedown) as it is clear from the graph at the Fig.1.7. For many materials such 

behavior does not correspond with reality and during numerical modeling, constant 

deformation increment can be achieved with aim of suitable choice of parameter 

𝛾𝑀(Chaboche and Nouailhas, 1989) 𝛾𝑀 =
𝛿𝜀𝑝∙𝐶𝑀

2𝜎𝑀∙𝛥𝜀𝑝
. 

  
Fig1.6:Properties of constants of Chaboche 

nonlinear KH model (case M=3). 
Fig1.7:Scheme for use of the hysteresis loop to 

identify parameters of Chaboche model. 

  

Thus, with suitable choice of 𝛾𝑀  we get very good model for uniaxial ratcheting 

prediction (ratcheting with steady state only). In case of non-proportional loading the 

Chaboche model with three back stresses (𝑀 = 3)  considered in Fig.1.6 and Fig.1.7 

drastically over predicts ratcheting as has been shown by Bari & Hassan, 2000. 
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Chapter 2. Estimation of Chaboche Parameters 

Following the suggestion by Chaboche, the kinematic hardening parameters are 

determined from strain controlled stable hysteresis loop and not from the monotonic 

stress-strain curve. All material parameters are determined from stable LCF hysteresis 

loop.  

2.1 Classical approach 

The value of C1 is determined from the slope of stress-plastic strain curve of loading 

branch of stable hysteresis loop at cyclic yield point. Corresponding γ1 value should be 

large enough that α1 saturates immediately. Constant slope of the stress-plastic strain 

curve in loading branch of stable hysteresis loop at a high strain range is C3 and γ3 is set 

to zero. C2 and γ2 are estimated by trial and error so that Eq.(2.1)is satisfied, C1 > C2 > 

C3 andγ1 > γ2 > γ3 = 0 and represent the experimental hysteresis loop satisfactorily. 

 
𝐶1

𝐷1
+

𝐶2

𝐷2
+ 𝜎0 = 𝜎 −

𝐶3

2
[𝜀𝑝 − (−𝜀𝑦𝑐

𝑝 )] (2.1) 

A MATLAB program (khparam.m) has been developed to calculate the material 

parameter by the above method. The inputs to this subroutine are: true stress – true strain 

data, Young’s Modulus, Poisson’s ratio and the value of cyclic yield stress (CYS), and the 

location where first segment ends (locate1). First it is required to calculate the plastic 

strain, hardening stress and back stress at each point of strain data for which stress is 

higher than 2 ∗ 𝐶𝑌𝑆. 

 
Fig.2.1 Schemes for identification of Chaboche parameters 
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In the following portion of the thesis,  𝛾1 , 𝛾2 , 𝛾3  have been referred to 𝐷1, 𝐷2 , 𝐷3 

respectively for the convenience in coding.   

Direct calculation of C1, D1: Plastic strain at a point ‘i’ can be calculated as 

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑖) = 𝑇𝑟𝑢𝑒_𝑠𝑡𝑟𝑎𝑖𝑛(𝑖) −
𝑇𝑟𝑢𝑒_𝑠𝑡𝑟𝑒𝑠𝑠(𝑖)

𝐸
 

Hardening stress at a point ‘i’ is calculated as 

𝐻𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔_𝑠𝑡𝑟𝑒𝑠𝑠(𝑖)  =
𝑇𝑟𝑢𝑒_𝑠𝑡𝑟𝑒𝑠𝑠(𝑖)

2
− 𝑐𝑦𝑠 

Back stress (𝛼) at a point ‘i’ is given by 

𝛼(𝑖) = 2 ×
𝐻𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔_𝑠𝑡𝑟𝑒𝑠𝑠(𝑖) 

3
 

Then loading branch is divided into three segments. The strain amplitude where first 

segment ends, marked by locate1 is taken as 0.0004, though its choice is somewhat 

arbitrary. 

In the third segment there is no recovery as 𝐷3 = 0  so from the peak point move 

backward up to a point so that it fits linearly. This is ensured by the value of R-squared 

error not crossing 0.95. And the point up to which this condition is satisfied is marked as 

locate2 which is the starting point for the third segment. 

C1 is calculated from the slope of the line drawn taking first two points after cyclic 

yielding. If the index ‘i’ for the first two points of the hysteresis curve, be written as ‘1’ 

and ‘2’ respectively then,  

𝐶1 =
3

2
×

𝛼(2) − 𝛼(1)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(2) − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(1)
 

C3 is calculated from the slope of the line joining the first point of segment3 marked by 

locate2 and last point of segment3 marked by ‘k’. D1 is calculated from the value of C1, 

hardening modulus and the value of back stress at the point locate1. 

𝐶3 =
3

2
×

𝛼(𝑘) − 𝛼(𝑙𝑜𝑐𝑎𝑡𝑒2 + 1)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑘) − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒2 + 1)
 

Hardening Modulus (H) at the point where segment1 ends i.e. locate1, is given by, 

𝐻(𝑙𝑜𝑐𝑎𝑡𝑒1) =
𝛼(𝑙𝑜𝑐𝑎𝑡𝑒1) − 𝛼(𝑙𝑜𝑐𝑎𝑡𝑒1 − 1)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒1) − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒1 − 1)
 

𝐷1 is given by, 
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𝐷1 =

2

3
× 𝐶1 − 𝐻(𝑙𝑜𝑐𝑎𝑡𝑒1)

𝛼(𝑙𝑜𝑐𝑎𝑡𝑒1)
 

And 𝐷3 is set to zero. 

Optimization of C2 by trial and error: C2 is calculated by trial and error. The range of 

the C2 value can be found by lowest (at the end point of segment2) and highest (at the 

initial point of segment2) value of the slope of segment2.  

So the lower and higher value of C2 is given by, 

𝐶2_𝑙𝑜 =
3

2
×

𝛼(𝑙𝑜𝑐𝑎𝑡𝑒2) − 𝛼(𝑙𝑜𝑐𝑎𝑡𝑒2 − 1)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒2) − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒2 − 1)
 

𝐶2_ℎ𝑖 =
3

2
×

𝛼(𝑙𝑜𝑐𝑎𝑡𝑒1 + 1) − 𝛼(𝑙𝑜𝑐𝑎𝑡𝑒1)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒1 + 1) − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐_𝑠𝑡𝑟𝑎𝑖𝑛(𝑙𝑜𝑐𝑎𝑡𝑒1)
 

The value of 𝐶2 𝐷2⁄  ratio can be determined by solving the Eq.2.1, using the values of 

𝐶1, 𝐷1, 𝐶3 as calculated above. 

Now a value of C2 can be guessed within the range (C2_lo, C2_hi). And the value of D2 

can be calculated from C2/D2 ratio. Using these values of the six parameters LCF can be 

simulated using Chaboche model and the resulted stress strain data can be compared with 

the experimental data. By manually repeating the last step better solution for the set of six 

parameters can be found. 

2.2. Scope of optimization – sensitivity of Chaboche parameters 

Thus obtained material parameters results in rudimentary simulation of plastic curvature. 

After through scrutiny of the experimental curve it is observed that the cyclic yield stress 

and location of the first segment cannot be determined deterministically from the 

experimentally true stress – plastic strain hysteresis loop data. In the sections below the 

influences of such parameters are discussed. 

2.2.1 Influence of the choice of cyclic yield stress: 

The value of the material parameters depends on the point where the yielding starts, but 

the value of the cyclic yield stress (𝐶𝑌𝑆) cannot be chosen deterministically. As the 𝐶1 is 

calculated from the slope of the curve just after yielding, so the value of 𝐶1 changes with 

change in the value of 𝐶𝑌𝑆. The value of 𝐷1 is calculated by the above described method 

taking the locate1 point as 0.0004 strain amplitude for each case. 𝐶2, 𝐷2 has been solved 

iteratively. And the value of 𝐶3 is the slope of the third segment so it is same for each 

case. The value of the each parameter used for simulation has been tabulated in the Table 

2.1. 
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Table 2.1: Influence of CYS on C1, D1 and C2, D2 

CYS C1 D1 C2 D2 C3 D3 

180 616624 4391 70550 1030 16408 0 

200 602321 5194 72767 1026 16408 0 

220 322729 2737 72543 1587 16408 0 

240 294347 3248 17835 1064 16408 0 

Fig.2.2 below shows how the simulated true stress-true strain hysteresis loop varies for 

different choices of cyclic yield stress. 

 
Fig.2.2: Hysteresis loops for cyclic stress strain for various values of CYS 

2.2.2 Influence of the width of first segment 

For a particular value of 𝐶𝑌𝑆, if we change the position where the first segment ends, the 

hysteresis loop also changes. The 𝐶𝑌𝑆  has been kept fixed at 205 𝑀𝑃𝑎 and the point 

locate1 has been varied. 𝐶1  has been calculated from initial two points after cyclic 

yielding in each case. So the value of 𝐶1 is same in each case. The value of 𝐷1 has been 

calculated by the method described above. 𝐶2 and 𝐷2 has been solved iteratively. And as 

𝐶3 is the slope of the Third segment it is also same in each case. The values of the 

parameter which has been used for each simulation are tabulated in Table 2.2. 

Table 2.2: Influence of width of segment on C1, D1 and C2, D2 

CYS Locate1 C1 D1 C2 D2 C3 D3 

205 0.0002 577785 6166 109097 1248 16408 0 

205 0.0005 577785 4845 61112 989 16408 0 

205 0.001 577785 3852 35429 1142 16408 0 

205 0.0015 577785 3404 26200 2318 16408 0 
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The resulted Hysteresis loop is shown below in Fig 2.3.We can observe that though there 

is no change in the value of C1 but as the calculation of D1 depends on the choice of 

segment1,So the value of D1 changes. As a result the amount of recovery for the first 

segment of the loop varies. And also as the C1/D1 ratio changes so to solve equation 2.1 

iteratively the value of C2 and D2 also changes, so the 2nd segment of the loop also 

varies. 

 
Fig.2.3: Hysteresis loops for cyclic stress strain for various values of width of segment1 

2.2.3 Effect of C1 

As previously discussed 𝐶1 is the slope of the initial portion of the curve which is very 

high, so the variation in 𝐶1 changes the high plasticity modulus at the onset of yielding 

and it stabilizes very rapidly. And with variation in 𝐶1 the amount of dynamic recovery 

for the first segment also changes. As a result the 𝐶2/𝐷2 ratio changes, which, in turn 

affects the transient nonlinear segment of the hysteresis loop i.e. segment2 (fig2.4). 

Material models differ in the range of material properties they can describe and 

proportionally, in complexity of their definition. Complex material models are 

characterized by numerous material parameters that have to be carefully identified to 

follow material behavior as accurately as possible. Due to the complexity of chosen 

Chaboche [(J. L. Chaboche, 2008), (J. Lemaitre, J. L. Chaboche, 1990)] kinematic 

hardening rule, it is necessary to use complex numerical procedures to identify material 

parameters. 
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Fig2.4: Effect of C1 on Hysteresis loop 

 

2.3 Objective of the work 

In order to determine the Chaboche kinematic hardening parameters through optimization 

our objective should be focused on the choice of evolutionary algorithm and LCF 

simulation of Chaboche model.  

2.3.1. Use of evolutionary algorithm:  

Based on proposed material model and its mechanical principle, the parameters of 

kinematic hardening (𝐶1, 𝐷1, 𝐶2, 𝐷2, 𝐶3 and 𝐷3) are obtained on the basis of material 

response in the fully reversed tensile – compressive cyclic tests, from the recorded cyclic 

stress – strain curves. The calculation procedure is automated by using evolutionary 

algorithm for material parameters identification and finite element method material 

behaviour simulation. The genetic algorithm based procedure consists of three main parts. 

The first part is system characterization, which means determination of parameters that 

can completely characterize the system. In the second part, forward modelling, 

mechanical principles and physical laws are defined to enable prediction of system 

behaviour. The third part is backward or inverse modelling. Inverse analysis plays an 

important role in problems where the cause has to be defined from the results. It consists 

of defining the search methods of unknown sample characteristics by observing sample’s 

response to a probing signal. Definition of objective function represents the solution of 

inverse problem. The mathematical structure of the model is 𝜎 = 𝜎̂(𝜀, 𝑎𝑖), which is 

defined by mapping function which defines the dependence among stress and strain 

values and the material parameter values 𝑎𝑖 =  [𝐶1, 𝐷1, 𝐶2, 𝐷2, 𝐶3 and 𝐷3]  that are 

considered within the chosen domain. 
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2.3.2 Use of standard FEM package: 

Using FEM allows detailed visualization of where structures bend or twist, and indicates 

the distribution of stresses and displacements. FEM software provides a wide range of 

simulation options for controlling the complexity of both modeling and analysis of a 

system. Similarly, the desired level of accuracy required and associated computational 

time requirements can be managed simultaneously to address most engineering 

applications. FEM allows entire designs to be constructed, refined, and optimized before 

the design is manufactured. The mesh is an integral part of the model and it must be 

controlled carefully to give the best results. Generally the higher the number of elements 

in a mesh, the more accurate the solution of the discretized problem. However, there is a 

value at which the results converge and further mesh refinement does not increase 

accuracy. 

ABAQUS is a suite of powerful engineering simulation program, based on the finite 

element method that can solve problems ranging from relatively simple linear analysis to 

the most   challenging nonlinear simulation. Chaboche model can be simulated by FE 

software ABAQUS through UMAT. Fig2.5 shows a simulation of Chaboche model using 

ABAQUS with UMAT. 

 

Fig2.5:simulation of low cycle fatigue using ABAQUS 

2.4 Goal setting: 

Based on the above objective our goal is concerned specifically to the following facts: 

2.4.1 Optimization using GA:  

The usage of evolutionary algorithms is proposed because of their advantageous 

characteristics, mainly considering insensitivity to errors in measured data, reliability in 
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achieving convergence to accurate results, improbability for convergence to local minima 

and it’s robustness regarding the choice of objective function [(T. Furukawa, G. Yagawa, 

1997), (X. T. Feng, C. Yang, 2001)]. Genetic algorithm is stochastic search method for 

obtaining good approximate solutions for complex problems (M. Franulovic, R. Basan, I. 

Prebil, 2009). It is based on mechanisms of natural evolution and genetic principles. The 

genetic algorithm creates a population of solutions and applies genetic operators, such as 

scaling, selection, mutation and crossover to evolve the solutions in order to find the best 

ones. The proper evolution of population is assured by selection of adequate genetic 

operators in order to achieve fast convergence to global optima.  

2.4.2 Selection of proper objective function: 

One of the main premises in genetic algorithm application for parameter identification is 

the choice of objective function for inverse problem solution. There are numerous 

published papers that suggest different objective functions for the problem solution. In 

order to evaluate these suggestions and the influence of objective function on simulation 

of material behavior by parameter identification with genetic algorithm usage, the most 

common ones are investigated [(T. Furukawa, T. Sugata, S. Yoshimura, 2002), (R. 

Fedele, M. Filippini, G. Maier, 2005), (D. Szeliga, J. Gawad, M. Pietrzyk, 2004)], and 

also their modified versions that are implemented. Scaling of population is based on the 

fitness values of the individuals, which is the solution of chosen objective function .In 

general 

f = ∑ [
yi

∗ − ŷ(xi
∗;parameters)

yi
∗

]

2n

i=1

 

Where asterisk * refers to experimental value, while mark ^ refers to value calculated by 

using set of parameters. The chosen objective functions used for comparison in this 

research are taken in the form published by some authors and also in modified form of 

each of them as shown in Table 2.3 

Table 2.3: List of objective function for material parameters identification which have been used by various 

researchers 

Source Function 

T. Furukawa, T. Sugata, 

S. Yoshimura,2002 f = ∑ wi[σi
∗ − σ̂(εi

∗; a)]2

n

i=1

 ;  wi = 100 

R. Fedele, M. Filippini, 

G. Maier,2005 f = ∑ [
σi

∗ − σ̂(xi
∗;a)

σi
∗ ]

2n

i=1

 

D. Szeliga, J. Gawad, M. 

Pietrzyk,2004 f = √
1

n
∑ [

σi
∗ − σ̂(xi

∗; a)

σi
∗ ]

2n

i=1

 

 



Page | 21 

2.4.3 Bridging the gap between coding environment and FE package: 

MATLAB platform has been used for preprocessing of the data, and computer 

implementation of GA whereas for Finite element simulation ABAQUS has been used. In 

need for exhaustive searching by GA , at each loop it is required to compare the simulated 

data with the experimental data. So MATLAB has to call ABAQUS and update the 

current set of values of the Chaboche parameters and extract the simulation results in an 

atomized way. And as the two software environment is not same in nature so it is a 

challenge to link MATLAB with ABAQUS. 

2.5 Benchmarking 

Parameter optimization problems start with experimentation and data extraction, followed 

by preparing the data for further processing. The steps can be classified as: 

1) Experimentation: LCF experimentation for a single strain amplitude (0.5 %) for 

the material, Identification of the material behaviours, data collection and 

extraction of saturated loop data where modelling of the material behaviour only 

by kinematic hardening is justified. 

2) Preprocessing: from the saturated cyclic true stress – plastic strain loop data, the 

strain increments are identified and a step time – amplitude curve is generated for 

FE simulations. Again from the data, only the loading branch is collected for 

Chaboche parameter extraction. 

3) Coding: This is the main focus of the present work. The coding is done for three 

different purposes in this work: i) the main and auxiliary optimization routines in 

MATLAB, ii) MATLAB routines those provides the classical framework for the 

material parameter identification, and iii) the communication routines in 

PYTHON. The communication routines built the bridge between MATLAB and 

ABAQUS CAE environment. The updated simulation parameters are plugged into 

ABAQUS and simulated stress-strain data at precise location and at accurate 

moments are extracted out by these routines. 

Another auxiliary routine is used in this work, which is the user defined material 

subroutine (UMAT) for Chaboche model written in FORTRAN. 

The main optimization routine is chosen to be Genetic Algorithm (GA) to avoid the 

dilemmas like the vibration in the solution, diverge, and local optima. The use of GA is 

significantly promising for complex optimization. 
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Chapter 3. Material and Experimental Procedure 

 

3.1 The Material 

The 20MnMoNi55 low alloy carbon steel is used in reactor pressure vessels in nuclear 

power plants where the operating temperature of this material is 300°𝐶 .The pressure 

vessel and the primary heat transport piping of Indian PHWR nuclear power plants are 

designed and operated on the basis of ‘leak before break’ (LBB) concept. In order to 

implement this LBB concept in the design of pressure vessels it is important to 

understand the fracture toughness behavior of the material in its operating conditions. The 

typical chemical composition of the present material (wt. %) is: C-0.21%, Si-0.24%, Mn-

1.48%, Cr-0.20%, Ni- 0.80%, Mo-0.52%,V-0.02%, Cu-0.07%, As-0.02%, Al-0.015%,Sn-

0.005%, P-0.008%, S-0.005%. 

The material chiefly consists of 0.2% Carbon with 1.25% Manganese, 0.5% 

Molybdenum, 0.6% Nickel with small quantity of Chromium, Silicon and Sulphur. From 

metallurgical point of view, increase of material strength may influence on the other 

properties such as toughness, corrosion resistance and may also affect the weldability. So 

good mechanical and metallurgical properties are required to withstand the internal 

pressure and prevent unexpected failure during the service life. The particular material 

20MnMoNi55 steel has been the subject of extensive research work recently (M. S. E1-

Fadaly, T.A. E1-Sarrage, A.M. Eleiche, W. Dahl, 1995). The typical microstructure of 

20MnMoNi55 steel as shown in fig.3.1 this microstructure consists of Bainite (volume 

fraction 35%) and Ferrite phases.  Bainite is randomly oriented in Ferrite matrix, which 

gives more toughness. The Ferrite gives ductility and Bainite gives strength to the 

investigated steel. 

 

 
Fig 3.1: Typical optical microstructures of the investigated steel in L-T direction 



Page | 24 

3.2 Tensile tests 

Uniaxial monotonic (tensile) tests are conducted for basic material properties. Tensile 

tests are performed according to ASTM E8M. Smooth round specimen with diameter 

6 𝑚𝑚 and gauge length 30 𝑚𝑚 (5𝐷) are used. A brief account of the tests are presented 

in table 3.1: 

Table 3.1: Overview of the monotonic tests. 

 Details Specification 
Standard/ 

Grade 
Maker Remarks 

Testing 

Machine 

Servo-Hydraulic 

Universal Testing 

Machine 

100kN Grip 

Capacity, 8800 

Controller 

 Instron 
Blue Hill v3.0 

software used 

Measuring 

Instrument 

Vernier Caliper 
0 – 200mm 

L.C. – 0.02 
 Mitutoyo  

Extensometer 
Static, 

25 ± 5mm 
 Instron  

Test Specimen 

20MnMoNi55 

RPV steel,  

round, threaded  

ϕ 6 mm,  

GL 30 mm, 

M10x25 coarse 

thread 

ASTM 

E8M 

Local 

Vendor 

Dimensions are 

in ‘mm’ 

Test 

Procedure 

Tests are done in 

Displacement 

Controlled mode, 

at room temp.  

(300K), and 

quasistatic 

Strain rate (10-3 

per second) 

 
ASTM 

E8M 

As per 

ASTM 

Current strain 

rate and 

temperature do 

not produce 

any rate effects 

Representative tensile stress – tensile strain curve for 20MnMoNi55 low alloy RPV steel 

is shown in figure 3.2 below.  

 
Fig3.2: Tensile stress vs tensile strain curve 
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Typical tensile properties of the material is Young's modulus (tensile strain 0.01 % - 0.1 

%): 209561.56187 MPa, Tensile stress at Yield (Offset 0.2 %): 499.95732 MPa, Tensile 

Strength: 642.51389 MPa, Percentage Elongation: 24.252 %. For numerical simulations, 

the Poisson’s ratio is taken to be 0.3 typically. 

3.3 Uniaxial low cycle fatigue (LCF) tests: 

As per ASTM 606M, standard round non-threaded specimens of 8mm diameter and 

20mm gauge length (> 2D) are fabricated from the pipe stock available with their axes 

parallel to the pipe axis. The specimen geometry is as shown in figure 3.3a. All tests are 

carried out in strain controlled mode at a strain rate of 10-3 s-1 and accordingly the 

displacement rates and the data extraction frequencies (200 pts. per cycle) are adjusted to 

achieve constant strain rate and accurate results without losing valuable information as far 

as possible. 

Similarly like tensile tests, uniaxial LCF experiments are also carried out using above 

mentioned servo-hydraulic testing machine in the laboratory environment (27°C, 50% 

Relative Humidity). A close-up of the experimental setup is shown in figure 3.3b.  

  
Fig3.3a: Uniaxial specimen geometry 

(dimensions are in ‘mm’). 

Fig3.3b: Uniaxial testing system 

(INSTRON 8800). 

 

A 12.5 mm gauge length extensometer (INSTRON make) with ±5 mm travel is to be used 

to measure the strain during LCF tests. Tests are continued till failure and stress-strain 

data acquired throughout the test so as to obtain ∼200 data points in each stress cycle for 

cyclic tests. Tests are conducted under software (Wave Matrix) control using a computer 

interfaced to the INSTRON 8800 control system of the testing machine and capture data 

automatically. 

Representative true stress – true strain hysteresis loop at saturated cycle for the material is 

shown below in figure 3.4.  
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Fig3.4:Typical saturated (200th) cycle true stress vs. true strain experimental data for 0.5 % 

strain amplitude for 20MnMoNi55 RPV steel at room temperature and quasi-static strain-

rate. 
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      Chapter 4. GA based optimization of Chaboche parameters 

 

4.1 Overview of Genetic Algorithm 

The genetic algorithm (GA) is an optimization and search technique based on the 

principles of evolution and natural selection. The genetic algorithm can be applied to find 

optimal solution and to solve equations.A GA allows a population composed of many 

individuals to evolve under specified selection rules to a state that maximizes the 

“fitness” (i.e., minimizes the objective function). A path through the components of the 

GA is shown in flowchart in Fig.4.1 

 

Fig.4.1:  Flowchart of a binary genetic algorithm 
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4.1.1 Selecting the Variables and the Cost Function 

The GA begins by defining a chromosome or an array of variable values to be optimized. 

If the chromosome has 𝑁𝑣𝑎𝑟variables (an 𝑁𝑣𝑎𝑟-dimensional optimization problem) given 

by p1, p2 … pvar then the chromosome is written as an 𝑁𝑣𝑎𝑟 element row vector. 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 =  [𝑝1, 𝑝2, 𝑝3 … 𝑝𝑣𝑎𝑟] 

An objective function generates an output from a set of input variables (a chromosome) 

.The object is to modify the output in some desirable fashion by finding the appropriate 

values for the input variables. Each chromosome has a cost found by evaluating the 

objective function, f, at p1, p2, . . . ,pNvar 

𝐶𝑜𝑠𝑡 =  𝑓 (𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) = 𝑓(𝑝1, 𝑝2, … . 𝑝𝑁𝑣𝑎𝑟) 

4.1.2 The Population 

The GA starts with a group of chromosomes known as the population. If the population 

size is 𝑁𝑝𝑜𝑝  then the population has 𝑁𝑝𝑜𝑝  chromosomes and is an 𝑁𝑝𝑜𝑝 × 𝑁𝑏𝑖𝑡𝑠  matrix 

filled with random ones and zeros, where 𝑁𝑏𝑖𝑡𝑠  is the no of bits required to represent a 

variable. It has been recognised that if the initial population to the GA is good, then the 

algorithm has a better possibility of finding a good solution [(E. K. Burke, S. Gustafson, 

and G. Kendall, 2004), (E. Zitzler, K. Deb, and L. Thiele, 2000)]. If the similarity of the 

population is too high, then the convergence speed is low. The initialization of the 

individuals of the population should be as uniformly distributed as possible but it is hard 

to achieve because initialization is random. The uniform initialization gives the GA a 

better performance because there is an individual in each area of the search space (Chou 

C.H. and Chen J.N, 2000). 

4.1.3 Variable Encoding and Decoding 

Since the variable values are represented in binary, there must be a way of converting 

continuous values into binary, and vice-versa. The mathematical formulas for the binary 

encoding and decoding of the nth variable, pn, are given as follows: 

For encoding, 

𝑃𝑛𝑜𝑟𝑚 =
𝑃𝑛 − 𝑃𝑙𝑜

𝑃ℎ𝑖 − 𝑃𝑙𝑜
 

𝑔𝑒𝑛𝑒{𝑚} = 𝑟𝑜𝑢𝑛𝑑{𝑃𝑛𝑜𝑟𝑚 − 2−𝑚 − ∑ 𝑔𝑒𝑛𝑒[𝑝]2−𝑝}

𝑚−1

𝑃=1

 

For decoding,  

𝑃𝑞𝑢𝑎𝑛𝑡 = ∑ 𝑔𝑒𝑛𝑒[𝑚]2−𝑚 + 2−(𝑀+1)

𝑁𝑔𝑒𝑛𝑒

𝑚=1
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𝑞𝑛 = 𝑃𝑞𝑢𝑎𝑛𝑡(𝑃ℎ𝑖 − 𝑃𝑙𝑜) + 𝑃𝑙𝑜 

In each case, Pnorm=normalized variable,0≤ Pnorm≤1, Plo=smallest variable value, 

Phi=highest variable value, gene[m]=binary version of Pn,round{.}=round to nearest 

integer, Pquant=quantized version of Pnorm,qn=quantized version of Pn 

The quantized value of the gene or variable is mathematically found by multiplying the 

vector containing the bits by a vector containing the quantization levels: 

𝑞𝑛 = 𝑔𝑒𝑛𝑒 𝑋 𝑄𝑇 

Where, gene = [b1,b2…bNgene], Ngene= number bits in a gene, bn= binary bit = 1 or 0, Q = 

quantization vector = [2-1, 2-2… 2Ngene], QT= transpose of Q. 

Thus if a continuous variable is to be represented with high accuracy, we need to use 

alarge value of Ngenein its binary representation. In fact, the number of binary digits 

needed(Ngene) to represent a continuous variable in steps (accuracy) of ∆𝑥 can be 

computed fromthe relation 

2𝑁𝑔𝑒𝑛𝑒 >
𝑃ℎ𝑖 − 𝑃𝑙𝑜

∆𝑥
+ 1 

4.1.4 Selection 

Selection is the component which guides the algorithm to the solution bypreferring 

individuals with high fitness over low-fitted ones. It can be adeterministic operation, but 

in most implementations it has random components. There are varieties of selection 

methods. Some of them are described below. 

Roulette wheel selection:In this method for a minimization problem the probabilities 

assigned to the chromosomes are inversely proportional to their cost. A chromosome with 

the lowest cost has the greatest probability of being selected, while the chromosome with 

the highest cost has the lowest probability of selection. A random number determines 

which chromosome is selected. A normalized cost is calculated for each chromosome. 

Then for each chromosome cumulative probability is calculated. And the range in which 

the generated random no falls, the chromosome corresponding to that range is selected. 

The detailed algorithm of this selection scheme has been discussed in section 3.2.3. This 

approach tends to weight the top chromosome more when there is a large spread in the 

cost between the top and bottom chromosome. On the other hand, it tends to weight the 

chromosomes evenly when all the chromosomes have approximately the same cost. 

Instead of weighting based on actual cost we can also weight the chromosomes based on 

their rank obtained after sorting the population according to their cost. In this case the 

probability of selection for a particular row of population matrix is same in each iteration, 

so small populations have a high probability of selecting the same chromosome. 

In the beginning, the potentially good individuals sometimes fill the population too fast 

which can lead to premature convergence into local maxima or minima. On the other 
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hand, refinement in the end phase can be slow since the individuals have similar fitness 

values. These problems can be overcome by taking the rank of the fitness values as the 

basis for selection instead of the values themselves. So choice of selection scheme is 

problem dependent. 

 

Tournament selection: Another approach that closely mimics mating competition in 

nature is to randomly pick a small subset of chromosomes(two or three) from the 

population, and the chromosome with the lowest cost in this subset is selected for the new 

population. The Tournament selection works best for larger population sizes because 

sorting becomes time consuming for large populations. Thisselection scheme is also 

applicable when the fitness function is given in implicit form, i.e. when we only have a 

comparison relation which determines which of two given individuals is better. 

Algorithm: 

In this roulette wheel selection scheme with cost based weighting has been used. The 

roulette wheel selection scheme can be implemented as follows: 

1. Evaluate the fitness,𝑓𝑖, of each individual in the population. 

2. Compute the probability (slot size), pi, of selecting each member of the population: 

𝑝𝑖 = 𝑓𝑖 / ∑ 𝑓𝑖

𝑛

𝑗=1

 

Where 𝑛 is the population size. 

3. Calculate the cumulative probability, qi, for each individual:  

𝑞𝑖 = ∑ 𝑝𝑗
𝑖
𝑗=1 . 

4. Generate a uniform random number, r ∈(0, 1]. 

5. If r<q1 then select the first chromosome, x1, else select the individual xi such that qi−1<r 

≤qi 

6. Repeat steps 4–5 n times to create n candidates in the mating pool. 

4.1.5 Cross-over 

The purpose of crossover is to create new strings by exchanging information among 

strings of the mating pool.Mating is the creation of one or more offspring from the 

parents selected in the pairing process. The genetic makeup of the population is limited 

by the current members of the population. One method (termed single point crossover) is 

to choose pairs of individuals promoted by the selection operator, randomly choose a 
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single locus (point) within the binary strings and swap all the information (digits) to the 

right of this locus between the two individuals as demonstrated in Fig.4.2. 

 

 

Fig4.2: Schematic representation of Cross-over. 

Since the crossover operator combines substrings from parent strings (which have good 

fitness values), the resulting child strings created are expected to have better fitness 

values provided an appropriate (suitable) crossover site is selected. However, the suitable 

or appropriate crossover site is not known before hand. Hence the crossover site is usually 

chosen randomly. The child strings generated using a random crossover site may or may 

not be as good or better than their parent strings in terms of their fitness values. If they are 

good or better than their parents, they will contribute to faster improvement of the 

average fitness value of the new population. On the other hand, if the child strings created 

are worse than their parent strings, it should not be of much concern to the success of the 

GAs because the bad child strings will not survive very long as they are less likely to be 

selected in the next reproduction stage (because of the survival-of-the-fittest strategy 

used).One-point crossover is a simple and often-used method for GAs which operates on 

binary strings. For other problems or different coding, other crossover methods can be 

useful or even necessary. We mention just a small collection of them, for more details see 

[(GEYER-SCHULZ, A, 1996), (GOLDBERG, D. E, 1989)]. 

N-point crossover: Instead of only one, N breaking points are chosen randomly. Every 

second section is swapped. Among this class, two point crossover is particularly 

important 

Segmented crossover: Similar to N-point crossover with the difference that the number 

of breaking points can vary. 

Uniform crossover: For each position, it is decided randomly if the positions are 

swapped. 

Shuffle crossover: First a randomly chosen permutation is applied to the two parents, 

then N-point crossover is applied to the shuffled parents, finally, the shuffled children are 

transformed back with the inverse permutation. 
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In this case single point cross-over have been used for mating purpose. 

Algorithm: 

The steps of a single point cross-over are given below. 

i. First the index of the individual is generated randomly who will participate in mating. 

ii.  For each pair of mating a random cross-over point is randomly selected in between 

the first and last bit of the parent string. 

iii.  First, parent1 passes its binary code to the left of that crossover point to 

offspring1. In a like manner, parent2 passes its binary code to the left of the same 

crossover point to offspring2. Next, the binary code to the right of the crossover point of 

parent1 goes to offspring2 and parent2 passes its code to offspring1. Consequently the 

offspring contain portions of the binary codes of both parents. 

4.1.6 Mutation 

Random mutations alter a certain percentage of the bits in the list of chromosomes. 

Mutation is the second way a GA explores a cost surface. It can introduce traits not in the 

original population and keeps the GA from converging too fast before sampling the entire 

cost surface. A single point mutation changes a 1 to a 0, and vice-versa with probability 

‘pm’. Mutation points are randomly selected from the NpopXNbitstotal number of bits in 

the population matrix. Increasing the number of mutations increases the algorithm’s 

freedom to search outside the current region of variable space though pmshould be rather 

low in order to avoid that the GA behaves chaotically like a random search. Again, 

similar to the case of crossover, the choice of the appropriate mutation technique depends 

on the coding and the problem itself. There are a few alternatives, more details can be 

found in (GEYER-SCHULZ, A, 1996) and (GOLDBERG, D. E, 1989)again. 

Inversion of single bits: With probability ‘pm’, one randomly chosen bit is negated. 

Bitwise inversion: The whole string is inverted bit by bit with probability ‘pm’. 

Random selection: With probability ‘pm’, the string is replaced by a randomly chosen 

one. 

Inversion of single bits has been used here for mutation purpose 

Algorithm: 

Mutation also simulates biologic evolution mechanism. An algorithm for mutation 

operation is given below 

i.  For the individual to mutate, randomly choose the point to mutate which means the 

bit of the individual encoded binary string. 
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ii.  Change 0 to 1 and change 1 to 0, with a probability of mutation, ‘pm’. For every 

individual, a number of probabilities of mutation are randomly given by the computer. If 

the giver number is not greater than pm, the individual mutates, otherwise mutation 

doesn’t occur. 

4.1.7 Main programming  

Following the above overview of the algorithm for the main program is given below: 

Step I       First a population is created using the encoding function. 

Step II      Then the binary value of the variables is converted to decimal value. And the 

objective function is evaluated for each chromosome of the population. 

Step IV Then the best solution of current generation is identified. 

Step V      The generation counter is initiated. 

Step VI     New population is created by cross over operation using the function 

‘cross_over’. 

Step VII  Then mutation operation is done by using the function ‘mutation’. 

Step VIII  The new population is reevaluated for cost. 

Step IX    The best solution of the current generation is compared with the best solution 

of the previous generation and if the later one is better, it replaces the earlier 

else it remains unchanged. And also the worst solution of each generation is 

replaced with the best solution available at that time. 

 Step X        Iteration stops when the maximum no of iteration is reached or a specified 

minimum allowable error is attained. 

 Step X     Finally the best solution and corresponding set of variables are extracted 

using the function result.  

4.2 Preprocessing of Data before calling main programme 

This MATLAB code.‘preprocessor.m’.is used for orientation of experimental data and 

creating loading amplitude .The data is oriented so that it can be readily compared with 

the simulated data. Loading amplitude is created to give as an input to the Abacus FE 

package. Input of this module are Young’s modulus, Poisson ratio and the lowest and 

highest value of cyclic yield stress. Next it identifies and segregate the loading branch 

from the raw data  

4.3 LCF modeling and simulation in ABAQUS 

Uniaxial cyclic plastic deformations are simulated in ABAQUSCAE (v6.8) commercial 

finite element platform. Only one quarter of the working (gauge length) portion of the 
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actual specimenismodelled considering axisymmetric conditions. The specimen is 

discretized adopting structural meshing with total 154 nodes. 80 linear hexahedral (8-

noded, C3D8) elements are used. The linear elements have linear shape functions and 

enabled for full integration (on 8 integration points). Maintaining the symmetry, 

displacement boundary conditions are imposed according to the strain amplitudes using 

balanced triangular amplitude function with time. The amplitude function is obtained 

from the experimental data points fitting them against proportional virtual time increment.  

 

 

Fig. 4.3a:Discretized specimen Fig.4.3b:Axisymmetric loading arrangement 

The material model is incorporated through user material subroutine (UMAT), though the 

required material parameters are inserted into the ABAQUS material module. The 

iterative solver for the equivalent plastic strain increment and the overall integration 

schemes, as discussed in the previous chapter, are chosen carefully. The details of the 

integration scheme and the material subroutine can be found in the Annexure III. 

4.4 Linking of MATLAB with ABAQUS 

The ABAQUS is called by MATLAB routines through WINDOWS operating system’s 

DOS interface as it is usually done in the ABAQUS COMMANDS (no GUI) window. 

But before that, necessary update information are collected from MATLAB ‘ga3obj.m’ 

routine and saved into the ABAQUS model database (chaboche1.mdb) through 

MATLAB script ‘femsol.m’. When the model database file (chaboche1.mdb) is run 

through PYTHON, in the ABAQUS NO GUI COMMAND interface, it saves all 

necessary updates into ABAQUS model database file. 

Then in the ‘femsol.m’ ABAQUS STANDARD solver is invokedthrough ABAQUS NO 

GUI COMMAND interface and ABAQUS simulates the LCF experiment with the 

updated parameters. After the simulation is done ‘femsol.m’ calls another PYTHON script 

‘odbout.py’ in the ABAQUS VIEWER NO GUI interface for extracting necessary field 

outputs at precise locations. The outputs are mainly true stress and true strain loop data 

along with two marker and flag operator to select only plastic regimes of the loop. Thus 

obtained simulated true stress data at similar strain points as in the experimental result are 

then compared and the differences and cumulative error are calculated. 
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To run this entire sequence in an automated fashion, the DOS windows are closed after 

specific operation which is accomplished by introducing ‘/c’ flag in the ABAQUS NO 

GUI COMMAND prompt.    

4.5 The entire optimization sequence 

To obey the constraints of the Chaboche model, a scheme of sequential GA (or nested 

GA) has been planned. The requirement and execution of such planning has been 

described below in detail. 

The value of cyclic yield stress cannot be identified deterministically. So first a 

population of CYS is created under GA1.C3 can be determined by linear fitting of the 

third segment. From the maximum strain point the point up to which the linear fits hold 

well is the point locate2. 

Now the actual width of segment1 is not precisely defined, rather its range can be 

identified from the fig 3.3. The starting point of segment1 is selected as the point cyclic 

yielding. And the last point of segment1 i.e. locate1 can be anywhere between the point of 

cyclic yielding and locate2, so to identify segment1 we can create a range for actual 

position of the point locate1, only after creating a population of CYS by GA1, which can 

be given as an input to another GA (GA2) to find the best position of locate1 

corresponding to a particular value of CYS. This is also the reason why GA2 is called 

inside GA1. 

 
Fig.4.4: Schemes for identification of Chaboche parameters 

Now according to the section 1.3.1 the following facts regarding the upper and lower 

limit of C1, C2 can be observed. 
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Higher  limit of C1: slope of the hysteresis curve just after the point of cyclic yielding. 

Lower limit of C1: slope of the hysteresis curve taking the two points locate1 and the 

point just before it. 

Higher limit of C2: slope of the hysteresis curve taking the two points locate1 and the 

point just after it. 

Lower limit of C2: slope of the hysteresis curve taking the two points locate2 and the 

point just before it. 

So it is clear from the above considerations that the range of C1, C2 depends on the 

choice of CYS, locate1 and locate2 so we call the 3rd GA for each iteration of GA2 to find 

the best value of C1, C2 for a particular value of CYS and locate1. 

The population of C1, C2 is created under GA3. After that the value of D1, D2 is 

calculated deterministically as described in section 2.1 for each value of CYS, locate1, 

C1, C2, C3, D3. Now the complete set of Chaboche material parameters is available to 

run the simulation in ABAQUS, so that simulated stress strain data can be extracted. Now 

a suitable comparison method has to be used for comparing the experimental and 

simulated data by GA3.  

Definition of the objective function for GA3 

The root-mean-square error (RMSE) (or sometimes root-mean-squared error) 

between the stress value generated by simulation and experiment for each of the 200 

points of strain values obtained from experimental result has been used as the objective 

function by GA3 which has to be minimized. RMSE is a frequently used measure of the 

differences between values (sample or population values) predicted by a model or an 

estimator and the values observed. The RMSD represents the square root of the second 

sample moment of the differences between predicted values and observed values or the 

quadratic mean of these differences. These deviations are called residuals when the 

calculations are performed over the data sample that was used for estimation and are 

called errors (or prediction errors) when computed out-of-sample. The RMSD serves to 

aggregate the magnitudes of the errors in predictions for various times into a single 

measure of predictive power. RMSD is a measure of accuracy, to compare forecasting 

errors of different models for a particular dataset and not between datasets, as it is scale-

dependent.[1] 

RMSD is always non-negative, and a value of 0 (almost never achieved in practice) 

would indicate a perfect fit to the data. In general, a lower RMSD is better than a higher 

one. However, comparisons across different types of data would be invalid because the 

measure is dependent on the scale of the numbers used.  

RMSD is the square root of the average of squared errors. The effect of each error on 

RMSD is proportional to the size of the squared error; thus larger errors have a 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Sample_moment
https://en.wikipedia.org/wiki/Quadratic_mean
https://en.wikipedia.org/wiki/Statistical_deviation
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Root-mean-square_deviation#cite_note-1
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disproportionately large effect on RMSD. Consequently, RMSD is sensitive to outliers 

(Willmott, Cort; Matsuura, Kenji, 2006; Pontius,Robert; Thontteh, Olufunmilayo; Chen, 

Hao; 2008) 

𝑅𝑀𝑆𝐸 = √
∑ (𝜎̂ − 𝜎)2𝑇

𝑡=1

𝑇
 

Where 𝜎̂  is the simulated value of the stress for a particular strain and 𝜎  is the 

experimental value of the stress for the same strain value. ‘T’ is the total no of strain 

points which in this case is ‘200’ 

The whole process of the above described method is given below in step by step manner 

and also fig 4.5 shows the flowchart. 

1. GA1 creates a population of CYS then it calls ‘khparam3.m’ to calculate C3 and the 

location of the initial point of 3rd segment. 

2. Call khparam4 to calculate the range locate1. 

3. The above output is given as a input to GA2 for finding the best value of locate1 

corresponding to a particular value of CYS. GA2 first creates the population of locate1. 

Then it calculates range of C1, C2 by calling khparam5 for each value of locate1. 

4. GA3 creates population of C1, C2 to find the best value of C1, C2 for a particular value 

of CYS and locate1. 

5. khparam6 to calculate the value of D1, D2. 

6. Update the above calculated material parameters to the model database file of 

ABAQUS and submit the job to the ABAQUS to get the simulated value corresponding 

to a particular set of CYS and six material parameters. 

7. Then the stress values for the given strains are extracted from the output database of 

the ABAQUS compares the experimental results and simulated results and evaluates the 

objective function and find the best value of  C1,C2 for a particular CYS and locate1. 

9. And the best value of C1, C2 corresponding to lowest least square error for each value 

of locate1 is passed to GA2. 

10.Then GA2 find the best locate1 corresponding to lowest value of least square error and 

sent that to GA1 which contains best value of locate1,C1,C2 for each value of CYS. 

11. GA1 finds the best value of CYS for which the sum of least square error between the 

experimental and simulated stress value at each strain point is minimum. And thus finds 

the best set of values for CYS, C1, D1, C2, D2, C3 and D3=0.  
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 Fig 4.5: Flowchart for GA based optimization of Chaboche parameters 
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                                                Chapter 5. Results and Discussions 

 

5.1 Results 

From the tensile tests, the elastic parameters of the material are identified which areused 

as the inputs for the optimization program. The parameters are rounded to the nearest 

integer value for the sake of simplicity. The rounded parameters are Young’s modulus 

=210 𝐺𝑃𝑎, and Poisson ratio = 0.3.  

The population size for cyclic yield stress (‘GA1’) is10, where maximum 10iterations are 

to be done. The precision for 𝐶𝑌𝑆 encoding in set to 1. Similarly, for the optimization 

(‘GA2’) of the first segment location on the plastic strain axis, the precision is set to 1𝐸 −

6, whereas, the population size and maximum number of iterations for GA2 is ‘5’. The 

population size and maximum iteration are maintained the same as GA2 for the 

optimization of 𝐶1 and 𝐶2 (‘GA3’) also, though, the precision has been changed to 10 for 

these parameters. The calculated string length for above selected precisions are 7 for 𝐶𝑌𝑆, 

10 for segment1 and 16 for 𝐶1 and 𝐶2. The range of the cyclic yield stress is taken as 

obtained corresponding to 0.01% to 0.05% plastic strain, i. e. 175 𝑀𝑃𝑎 to 225 𝑀𝑃𝑎.  

The best set of parameters value of last five populations is given in table 5.1. And the 

evolution of hysteresis loop towards the actual experimental loop is shown in fig.5.1. 

Table 5.1: Best set of parameters value of last five populations. 

 

CYS C1 D1 C2 D2 C3 D3 RMSE 

240 189941 1095 17835 1065 16408 0 40.48 

240 294347 3248 17835 1065 16408 0 48.56 

211 188137 1093 17959 1069 10069 0 29.94 

205 250000 1095 17835 1064 16408 0 51.23 

210 204843 1082 17418 986 9957 0 33.05 
190 189941 1095 17835 1064 16608 0 26.17 

 

The optimum values of the cyclic yield stress and six kinematic hardening parameters for 

three-segmented Chaboche kinematic hardening rule is obtained as presented in the Table 

5.2. The output variables are also rounded to their nearest integers in the process. 
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Fig.5.1 Improvement of hysteresis loop with progress in GA iteration. 

The optimum material parameters are used to simulate finally and the simulated 

hysteresis loop is compare with the experimental result. The comparison shows good 

agreement between them. The comparison is shown in the figure 5.2 below. Here once 

again it is worth to mention that the developed scheme of sequential GA fully obeys the 

inter dependence and the constraint equation (eq. 2.1) of Chaboche model as suggested by 

the Chaboche. 

Table 5.2: Optimized material parameters for Chaboche model 

Material 

Parameter 

Optimized 

Value 

CYS (MPa) 190 

C1 (MPa) 189941 

D1 1095 

C2 (MPa) 17835 

D2 1064 

C3 (MPa) 16608 

D3 0 
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Fig.5.2: True stress vs. true strain plots for experimental and simulated results, after FE 

simulation using optimum material parameters. 

5.2 Discussion 

As the material parameters are extracted following classical analytical framework and 

commercially available standard Finite Element package ABAQUS does the simulation, 

the results are more logically acceptable. The fitness convergence criteria of GA always 

ensure that the best solution found in any iteration remains until better solution is found. 

The above optimization scheme has been planned in such a way (using sequential GA) 

that it fully obeys the constraints of Chaboche model as proposed by Chaboche. Using a 

constraint GA scheme with all the parameters as variables, will certainly have some 

amount of constraint violation. 

For the above specified population size and maximum iteration it took 

9 𝑑𝑎𝑦𝑠 3 ℎ𝑜𝑢𝑟𝑠 16 𝑚𝑖𝑛𝑢𝑡𝑒𝑠  to complete the run. The huge computation time is a 

limitation for such optimization schemes where nested GA routines are involved. If the 

number of iterations and population size increases, GA may produce better results. Also 

result depends on the resolution of the available stress-strain data. 

The variation of string length of different variables does not affect computational time 

that much. As for example, the 24 𝑏𝑖𝑡 string instead of 16 took 3 𝑠 extra in a normal 

computer. It to be mentioned, in this regard that, the invoking of ABAQUS FE 

environment and maintaining its license checking and other protocols took most of the 

time. In a normal computer with 4 core CPU with 3.5 𝐺𝐻𝑧 processing speed and around 

2 𝐺𝐻𝑧  data transfer frequency with 32 𝐺𝐵  memory and 6 𝑀𝐵  Cache, every iteration 

took 8 𝑠. 
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Chapter 6. Conclusion 

 

6.1 Conclusion 

Trial-and-error optimization refers to the process of adjusting variables that affect the 

output without knowing much about the process that produces the output. A simple 

example is adjusting the rabbit ears on a TV to get the best picture and audio reception. 

An antenna engineer can only guess at why certain contortions of the rabbit ears result in 

a better picture than other contortions. Experimentalists prefer this approach. Many great 

discoveries, like the discovery and refinement of penicillin as an antibiotic, resulted from 

the trial-and-error approach to optimization. In contrast, a mathematical formula describes 

the objective function in function optimization. Various mathematical manipulations of 

the function lead to the optimal solution. Theoreticians love this theoretical approach. 

 

Generally, when referring to the functional inverse problems for the parameter 

identification, appropriate objective function must be used in the most calculation 

procedures. The choice of the function depends on the numerical procedure in material 

behaviour modelling that will be used. In genetic algorithm for parameter identification 

random applications were used to solve complex problem. In order to evaluate robustness 

in such calculation procedure, considering the choice of objective function, the most 

commonly used functions were examined. The investigation showed extremely good 

compatibility in results and only very small deviations of simulated from real material’s 

response. Therefore we can conclude that genetic algorithm in parameter identification is 

robust enough to give reliable data without need to consider the choice of the objective 

function for inverse problem. The probability to convergence to the accurate results is 

very high and there is no need for the improvement in the calculation procedure by using 

specifically oriented objective function. 

The choice of various input of the GA like population size, selection criteria, suitable 

crossover and mutation operator, probability of mutation requires a great insight into the 

problem. The uniform initialization instead of initial random population generation gives 

the GA a better performance because there is an individual in each area of the search 

space. To overcome this randomness, the search space is spitted into subspaces of 

population size to make each subspace contain an initial individual though it is not easy 

for multi-dimensional problems. 

 

Use of other advanced material models (Ohno-Wang, 1993; Abdel-Karim/Ohno, 2000; 

Halama, 2008) may simulate the material behaviour more closely to the actual 

experimental response. 
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6.2 Future scope 

As the scheme developed in this work does not require any subjective decision in case of 

material parameter identification so this scheme can be readily used for other materials. 

And, the linking of ABAQUS with MATLAB can explore more aspects of the 

utilization of simulation in other field of design also. 

Various attempts have been devoted to simulate LCF for a single strain range material 

models, identification of material constants for accurate modelling the material response 

under cyclic loading within a wide range of strain amplitude is still a challenge. The 

experiments show that the cyclic stress–strain curves are severely dependent on the strain 

range for ductile metals. In most of the cyclic material models, only the stabilized cycle is 

considered to compute the constants of the models. Considering this strategy in the 

simulation of ductile metals subjected to cyclic loading may lead to erroneous results 

particularly for the initial cycles of the loading. Each cycle of the hysteresis curve was 

divided into a tensile and a compressive half cycle. The yield stress and the constants of 

the three-rule Chaboche kinematic hardening model were computed for each half cycle 

using an automated program developed based on the genetic algorithm optimization. 

Therefore, new strain range–dependent relations for isotropic and kinematic hardening 

conditions may be proposed and the constants of the relations can be computed so that it 

could accurately simulate the stress–strain curve of the hysteresis loop from monotonic 

loading to the stabilized cycle. 
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