M.TECH FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING 1ST YEAR 2ND SEMESTER EXAMINATION ,2017

ADVANCED FERMENTATION TECHNOLOGY Time: Three hours Full Marks: 100

Part I (50 Marks)	
Answer Q.1 and any two from the	e rest
1a) Explain about sterilization of air by filtration.	
b) What is meant by solid state fermentation? Explain aboaspect and design of bioreactor of solid state fermentation	
Why medium sterilization is needed? What is del factor del factor for batch sterilization of medium.	? Explain about determination of 4+3.5+7.5
8 5 °	
3a) What is Biostat? Mention the advantages of batch and medium.	continuous sterilization of
b) Discuss about continuous sterilizer.	5+10
4a) Explain the following:	
i) Extraction of Tetracycline from fermentation broth using	g aqueous two phase systems.
ii) Bacterial resistance mechanism of tetracycline.	
b) What is chemostat and turbidostat?	7+3+5
5. Write short note on any two of the following :	2x7.5
a) Fed batch culture	
b) modification of basic chemostat.	

c) microbial growth in batch fermentation.

[Turn over

Ex/PG/FTBE/T/129C/2017

Time: Three Hours

M.TECH. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER – 2017

Subject: ADVANCED FERMENTATION TECHNOLOGY

Full Marks: 100

Use Separate Answer Scripts for Part I and Part II

Part II (Marks-50)

Question No.1 is Compulsory and answer any three questions from rest

1. How microbial cell disruption occurs by Non mechanical methods?

5

or

What is Growth associated, Non growth associated and Mixed growth associated product? What is Luedeking-Piret Equation? 3+2=5

- 2. A stirred tank reactor is to be scaled down from 10 m^3 to 0.1 m^3 . The dimensions of the large tank are : Dt = 2m, Di = 0.5m, N = 100 rpm
- (a) Determine the dimensions of the small tank (Dt, Di, H) using geometric similarity.
- (b) What would be the required rotational speed of the impeller in the small tank if the following criteria were used?
- i) Constant P/V
- ii) Constant tip speed.
- iii) Constant impeller Reynolds Number
- (b) How Turbidostat is used as a CSTR. Explain with the diagram of Turbidostat.

10+5=15

3. What is doubling time of cell mass? Prove that doubling time $(\tau_d) = \ln 2/\mu_{net}$. 1+2=3 A strain of mold was grown in a batch culture on glucose and the following data were obtained.

Time (h)	Cell Concentration (g/L)	Glucose Concentration (g/L)
0	1.25	100
9	2.45	97
16	5.1	90.4
23	10.5	76.9
30	22.0	48.1
34	33.0	20.6
36	37.5	9.38
40	41.0	0.63

- (a) Calculate maximum net specific growth rate.
- (b) Calculate the apparent growth yield.
- (c) What maximum cell concentration could one expect if 150g of glucose were used with the same size of inoculum?

- 4. Write the principle of any **three** method of separation of soluble products from fermented broth. 3x5=15
- 5. (a) Derive the Ruth equation for constant pressure filtration.
- (b) What is Terminal Velocity? Find out the expression of Terminal Velocity for a Centrifugation process. 7+(1+7)=15
- 6. Explain the Dynamic method for determination of Volumetric Oxygen Transfer Coefficient ($k_{L}a$) of a fermenter.

The following data were obtained for dissolve oxygen measurement in a glucose-gluconic acid fermentation system using a 5L fermenter.

Time	D.O.
(sec)	(mg/L)
10	3.5
15	3.5
25	3.5
30	3.5
35	3.5
40 (air off)	3.5
45	3.0
50	2.5
55	2.0
60	1.5
65 (air on)	1.0
68	1.4
73	1.85
80	2.25
88	2.55
95	2.75
103	3.00
111	3.25
117	3,30
122	3.40
130	3.45

Determine the values of

i) k_La

ii) rX

iii) C*