EX/PG/FTBE/T/127A/2017

M.TECH FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING ${f 1}^{ST}$ YEAR ${f 2}^{ND}$ SEMESTER EXAMINATION ,2017

ADVANCED ENZYME ENGINEERING

Time: Three hours

Full Marks: 100

Part I (50 Marks)

Answer Q.1 and any two from the rest

1. Explain the following:

4x5

- a) Damkohler number
- b) Effectiveness factor
- c) Inhibition of enzyme activity by macromolecules
- d) Double reciprocal plot
- 2. Experimental data on the hydrolysis of starch with α -amylase are given in the following table. Determine the values of the Michaelis constant K_m ; the equilibrium constant for the dissociation of the enzyme inhibitor complex, K_i ; the maximum reaction rate V_{max} and the types of inhibition involved in this hydrolysis.

Inhibitor(mg/ml)	substrate concentration(mg/ml)	Relative hydrolysis velocity	
		the offer the other transfer	
	11.24	98.2	
None	8.12	90.0	
(0.0)	5.61	79.1	
,	3.56	65.0	
F 12 4 6	2.34	51.7	
	10.0	77.0	
Maltose	5.26	62.5	
(12.7)	3.33	51.4	
(12.7)	2.04	38.9	
	1.89	37.0	
	33.30	116	
α-dextrin	12.9	102	
(3.34)	6.06	71.5	

2.82 1.60	47.6 32.2
1.00	02.2

- 3. What is an enzyme inhibitor? Explain the types of enzyme inhibitors. Comment on mode of action of enzyme inhibitors. Explain inhibition of enzyme activity by substrate analogs and cofactor analog. 2+3.5+3.5+6
- 4. D. Thornton and Co-workers studied the hydrolysis of sucrose at pH 4.5 and 25° C, using crude invertase obtained from Baker's Yeast in free and immobilised form. The following initial velocity data were obtained with 408 units of crude enzyme (1 unit = quantity of enzyme hydrolyzing 1 μ mol of sucrose/ min when incubated with 0.29 M sucrose in a buffer at pH 4.5 and 25° C).
 - a) Determine K_m and V_m for this reaction using both free and immobilized enzyme.
 - b) Do the data indicate any diffusion limitations in the immobilized enzyme preparation.

Free enzyme	Immobilized enzyme	
V ₀ (m mol hydrolysed/lit.min)	V ₀ (m mol hydrolysed/lit.min)	S ₀ (mol/lit)
0.083	0.056	0.010
0.143	0.098	0.020
0.188	0.127	0.030
0.222	0.149	0.040
0.250	0.168	0.050
0.330	0.227	0.100
0.408	0.290	0.290

- 5. Write short note on (any 3) of the following:
 - a) Thiole module
 - b) Turn over number
 - c) medical uses of enzymes
- d) Hanes Woolf plot

M.TECH. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER – 2017

ADVANCED ENZYME ENGINEERING

Time: 3hrs

Full Marks: 100

Part-II

Answer the question no. 1 and any two of the following

- 1. Glucose is converted to ethanol by immobilized *S. cerevisiae* cells entrapped in Caalginate beads in a packed column. The specific rate of ethanol production is $q_p = 0.2g$ ethanol / g cell.h and the average dry weight cell concentration in the bed is X = 25 g/l bed. Assume that growth is negligible (i.e. almost all glucose is converted to ethanol) and the bed size is sufficiently small that $\eta=1.0$. the feed flow rate is F=400 l/h, and glucose concentration in the feed is $S_{oi}=100$ g glucose/l. the diameter of the column is 1m, and the product yield coefficient is $Y_{P/S}=0.49$ g ethanol / g glucose.
 - (a) Write a material balance on the glucose concentration over a differential height of the column and integrate it to determine S=S(z) at steady state.
 - (b) Determine the column height for 98% glucose conversion at he exit of the column.
 - (c) © Determine the ethanol concentration in the effluent.

10

- 2. (a) What are the considerable parameters for immobilized enzyme reactor design?
 - (b) Give some examples of immobilized enzymes in food and pharmaceutical industries.
 - © Define Damkohler number and effectiveness factor. Write their significance in immobilized enzyme kinetics. 7+7+5=20
- 3. (a) Write the functions of steroids in pharmacy.
 - (b) What are the raw materials for steroid production?
 - \bigcirc Briefly describe different bioconversion methods for steroid production. 6+5+9=20
- 4. (a) Describe the diffusional effects in enzymes immobilized in porous matrix.
 - (b) Briefly describe the covalently bound enzyme immobilization process.
 - © What is the selection criteria of matrix for enzyme immobilization?

8+6+6= 20