Master of Electronics & Telecommunication Engineering 1st Semester Examination, 2017

Microwave and Millimeter Wave Circuits

Time: 3 hours

Full Marks:100

Answer any FIVE questions.

- 1. a) Using ABCD parameters find the simplified value of (AD BC) for a reciprocal 2-port network [6]
 - b) Considering R=1 Ohm, calculate ABCD and S-parameters at 1 GHz for the network shown in Figure 1. [14]

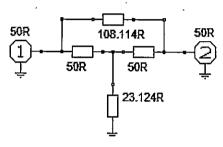


Figure 1.

- 2. a) Show that it is impossible to design a three-port network that is lossless, reciprocal and matched at all ports. With proper explanations write your opinion on possibility for designing "A three-port lossless and reciprocal network with two matched ports" [8+3]
 - b) Comment on realizability of the following networks and explain their utility if realizable:
 - i) three-port lossless and reciprocal network with a single matched port
 - ii) three-port lossy network with all port matched
 - iii) three-port lossless and non-reciprocal network with all matched ports [9]
- 3. a) Using a single 25 Ohm resistors construct a two way equal power divider circuit considering a 50 Ohm system. Calculate S-matrix for this power divider. Write your opinion regarding the effectiveness of this power divider.
 - b) Design a 4-way planar power divider/combiner using multiple quarter wavelength transformers and without using any crossover junctions. Find S-matrix for your design.

 [4+6]
- 4. a) Draw the geometry of a planar 3 dB branch line directional coupler and mark its different ports. Find out its S-parameters using even and odd mode analysis. Explain your result. [2+6+2]

- b) Can you use branch line coupler as power divider/combiner? Explain with arguments.
- c) Why no power can be delivered to a 50 Ohm resistor connected at the isolated port of this branch line coupler, when input port is connected to a signal generator operating at the designed frequency? Can this coupler be used keeping its isolated port open circuited?
- 5. a) Write design steps for a low pass filter with maximally flat response. Explain frequency scaling and impedance scaling.
 - b) How can open or short circuited transmission line sections be used replace lumped inductor or capacitors of your low pass filter? Explain the principle of operation of a stepped impedance low pass filter.

[4+4]

- c) How can a thick transmission line section used in a stepped impedance low pass filter be modelled using open circuit stubs? [4]
- 6. Design a stepped impedance Chebyshev low pass microstrip filter using the following specifications:
 - i) Cut off frequency = 2 GHz
 - ii) 5th order
 - iii) Pass band ripple = 0.1 dB
 - iv) Substrate relative dielectric constant = 4.4
 - v) Substrate height =1.6 mm
 - vi) Port impedances of 50 Ohm
 - vii) Lowest Line impedance = 10 Ohm
 - viii) Characteristic impedance = 50 Ohm
 - ix) Highest Line impedance = 120 Ohm

Sketch the layout of your design.

[20]

- 7. a) Is it possible to design an impedance matching transformer using $3\lambda/4$ length transmission lines? Explain re-entrance.
 - b) Sketch the layout of a four quarter-wave section microstrip impedance transformer with maximally flat response to match a 200 Ohm load to a 50 Ohm input line. Considering:

i) Frequency = 1 GHz

- ii) Substrate relative constant = 4.4
- iii) Substrate height = 1.6 mm

[14]

8. Write short notes on (Any two):

[2x10]

- a) Impedance matching with tapered line
- b) Circulator, isolator and their applications in microwave
- c) Ratrace
- d) Kuroda identities