M. E.E 2ND SEMESTER EXAMINATION, 2017 (1st / 2nd Semester/Repeat/Supplementary/Annual/Bi-Annual)

SUBJECT: - MODELING AND ANALYSIS OF ELECTRICAL MACHINES AND DRIVES

Time: Two hours/Three hours/ Four hours/ Six hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

PART I

Answer any Three Questions ALL questions carry equal marks

- Two marks are for neat and systematic answers (a) Show how a differential equation is solved by using Finite Q1. Difference Approximation. (b) Discritize 1-dimensional heat flow equation by Finite 8 DifferenceApproximation. Derive the shape function of a first order triangular element for a two Q2. dimensional problem and discretize the energy functional. A pair of buried pipes is being used to transmit electrical signals, Q3. determine the distribution of voltage signal along the line by using FEM. States the assumptions clearly. Describe a method to estimate the rotor winding resistance of an IM from the measured power, current and voltage.
- Q4.
- Describe a lumped parameter thermal circuit of an IM. How the 16 Q5. thermal parameters are determined?

M.E.E. 2-nd Semester,(Regular),2017

Modeling and Analysis of Electrical Machines & Drives

Time: 3 hours

Full Marks:100

(50 marks for each part)

Use separate Answer-script for each part

PART-II

Answer any three questions. Two marks for neatness. All symbols have their usual significance

- a) With the help of suitable current configurations in the stator of a 3-phase induction motor, describe how rotating magnetic fields having 2-pole can be produced when motor is supplied from a 3-phase sinusoidal AC source of 50 Hz. What is synchronous speed?
 - b) With the help of suitable current configurations in the **stator** of a 3-phase induction motor, describe how rotating magnetic fields having **2-pole** can be produced when motor is supplied from a 3-phase sinusoidal AC source of 50 Hz of opposite phase sequence as in part (a). What is synchronous speed?

 8+8=16
- 2. a) What are meant by space vectors for flux, voltage and currents ($\overline{\psi_s}$, $\overline{u_s}$ and $\overline{i_s}$) in a **stator** of 3-phase induction motor? Using space vectors derive stator vector-voltage equation $\overline{u_s} = \overline{i_s} R_s + \frac{d\overline{\psi_s}}{dt}$
 - b) Derive the transformed rotor vector-voltage equation of a 3-phase induction motor if the stator voltage equation is $\overline{u_s} = \overline{i_s} R_s + \frac{d\overline{\psi_s}}{dt}$ 8+8=16
- 3. Using space vectors for flux, voltage and currents ($\overline{\psi}$, \overline{u} and \overline{i}) in a 3-phase induction motor, develop the equivalent circuit having resistances and inductances of the windings, which is valid during transient process. 16
- 4. A 3-phase induction motor is started by applying 3-phase AC balanced voltages; obtain expressions for total **transient currents** in the machine until rotor starts rotating. Discuss about the time constants related to this transient currents.
- Using Lyon's method of instantaneous symmetrical components, derive the expression for total torque on the rotor of a 3-phase induction motor.