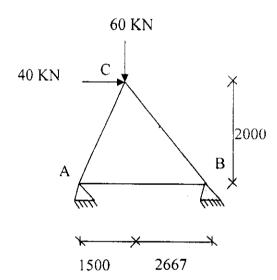
MASTER OF CONSTRUCTION ENGINEERING EXAMINATION, 2017 (1st Semester)

Time: Three hours ADVANCED STRUCTURAL ANALYSIS


Full Marks: 100

Answer any **four questions**. All question carry equal marks. Explain your answer with neat sketches if necessary. Assume any other relevant data not provided.

1. a) Deduce the **Transformation matrix** (T) of a pin-jointed truss element from local to global coordinate system in matrix method of analysis. Express the elemental stiffness matrix in global co-ordinate systems.

10

b) Calculate the **deflection of point C** of the truss ABC as shown below in Fig.1 by matrix method of analysis with the given member properties.

 $E = 2.1 \times 10^5 MPa$ for all Members.

c/s Area of AC = 2X15.39 cm² (2 ISA 100X100X8)

c/s Area of BC = 2X15.39 cm² (2 ISA 100X100X8)

c/s Area of AB = $1X15.39 \text{ cm}^2$ (ISA 100X100X8)

Fig. 1: Truss Problem

- 2. a) Derive the stiffness matrix of beam element in local coordinate system adopting finite element method.
 - b) Deduce the expression for **consistent** load vector adopting virtual work approach.

10

- 3. a) Deduce the expression of isotropic plate bending problem adopting finite difference method (FDM) from the basic governing equation.
 - b) What will be the modification of the above formulation in case of fixed supportat one edge?
 8

- b) Deduce the **shape functions for a rectangular element** in plain stress problem and indicate the relationship with shape function of truss element. 15
- 5. a) Discuss the significance of 'Pascal Triangle'. What are the steps to be adopted in general in FEM formulation?
 - b) Deduce the strain-displacement and stress-strain relationship for a **Constant Strain Triangular element** in plain stress problem.