EX/ PG/CSE/T/116A/8/2017 M. C. S. E. 1ST Examination 2017

Image Processing

Time: Three hours Full Marks: 100	
	Answer the <i>first</i> question and any <i>four</i> from others
1.	 a) Explain the theory of histogram equalization for image enhancement and write a C-like algorithm to implement it. b) Write a C/Java/Python program to display an image given in any standard file format.
	c) Write a C-like algorithm for implementing Sobel's operator for edge detection. $(6+5)+9+8$
2.	Given a gray-scale image describe the Otsu's method for selecting the threshold for converting it into segments.
	18
3.	Explain connected components labeling and write a C-like algorithm to implement it. $10 + 8$
4.	Propose a set of parameters for characterizing connected components. How can such a set be used to distinguish different connected components?
	8 + 10
5.	How is binary dilation a natural candidate for parallel processing? Explain with digital examples, the significance of HMT and K-tolerance template matching. How is the concept of 4- or 8- connectedness going to affect pattern recognition? $7+7+4$
6.	How are opening and closing unique as image processing operations? Propose a morphological algorithm for detecting the parts of a human-like binary image.
7.	Develop set of local filters for removing noise from images.
	Develop set of local filters for edge detection in images.
	18