Master of Computer Science & Engineering 1st Semester Examination 2017

ADVANCED OPERATING SYSTEMS

Time: 3 hours

Full Marks: 100

Answer any four questions from the following

(All parts of the same question must be answered together)

- 1.
- a. Suppose you are asked to design a kernel for a new operating system. List the features from monolithic kernel and microkernel that you want to have. Justify your answer.
- b. What is the layout of Unix file system? Mention the contents of each.
- c. How are the addresses of a file stored in an inode? Give an idea of the maximum file size that can be obtained using the approach in Unix.
- d. What information does buffer header contain? How can a buffer belong to both hash queue and free list simultaneously?

6+6+6+(4+3)=25

- 2.
- a. What are the differences between the contents of disk inode and in-core inode? Why are additional information required in in-core inode?
- b. How is context of a process saved in Unix?
- c. What are the *regions* and how are corresponding information maintained? Is it possible for more than one processes to share a user-written routine? Justify your answer.
- d. Explain the Unix process state diagram (with two modes).

(4+3)+5+(4+3)+6=25

- 3.
- a. What is an *immutable* file? What are the advantages and disadvantages of *stateless* system? Where can files be cached in distributed file systems?
- b. How is write/append action executed in OSF Distributed File System?
- c. What is Server Message Block (SMB)?
- d. How is Google File System (GFS) implemented? Explain with reference to the architecture.

(1+4+3)+4+3+10=25

4.
a. Consider the following categories (P and Q) of periodic tasks with their characteristics: (No explicit priority among the task categories are assumed.)

Process	Arrival time	Execution time	Deadline (ending)
P1	10	15	35
P2	30		55
P3	50		75
P4	70		95

Process	Arrival time	Execution time	Deadline (ending)
01	10	20	40
Q2	40		70
Q3	70		100
Q4	100		130

Assuming nonpreemptive strategy, draw up a schedule for the above tasks. Justify your answer.

b. Assuming preemptive strategy, draw up a schedule for the above tasks. Justify your answer. How does the assumption in (a) and (b) affect the scheduling?

c. Now consider two aperiodic tasks X and Y with the following characteristics:

Process	Arrival time	Execution time	Deadline
X	50	10	80 (ending)
Y	60	20	80 (starting)

Are you able to accommodate X and Y in the schedules set up by you as answers to above (a) and (b)? Clearly state the assumptions that you may take for setting up an appropriate schedule to accommodate all P and Q tasks along with X and Y. Show the schedules: (i) schedule at (a) with X and Y and (ii) schedule at (b) with X and Y. Justify your answer.

8+(8+3)+6=25

5.

- a. What does a *gap-free sequencer* do? How does it help in assuring data consistency? What may be the problem with such sequencer?
- b. How does Read-Replication algorithm improve system performance? How can data write be achieved in such a system?
- c. What do the components of a load distributing algorithm indicate?
- d. Explain the working of Stable Sender-Initiated algorithm and hence comment on the type of task transfer that would occur in this algorithm.

(3+2+2)+(3+2)+5+8=25

6.

- a. What advantages does buffer cache offer? Suppose a referenced data block is not found in buffer cache. What different scenarios will occur in such a situation? Mention the probable solutions.
- b. What are the threading models? Suppose a multithreaded program is to be executed in a multiprocessor system that does not support kernel level threads. What problems, if any, will arise in the execution?
- c. Why is Android operating system so popular? How are processes executed in Android? Which libraries are supported by Android? Mention some core applications supported by Android.

(2+5)+(4+2)+(2+4+3+3)=25