MASTER OF CIVIL ENGINEERING EXAMINATION, 2017 (1ST SEMESTER) (1ST / 2Nd-Semester/ Repeat/ Supplementary/Spl. Supplementary/Old/ Annual/ Biannual) SUBJECT: ADVANCED THEORY OF SOIL MECHANICS (Name in full)

Full Marks 30/100

Time: Two hours/Three hours/Four hours/ Six hours

(15/30 marks for each part)

Use a senarate Answer-Script for each part

No. of	Use a separate Answer-Script for each part Part I (Marks:60)	Martin
Questions		Marks
Q1. a)	What is Cauchy's stress formula? How these are used to obtain principal stresses in Cartesian coordinate system. In this connection write the expressions of stress invariants.	4+8 = 12
b)	The state of stress at a point is characterized by the components $\sigma_x = 12$, $\sigma_y = 4$, $\sigma_z = 10$, $\tau_{xy} = 3$, $\tau_{yz} = 0$.	
	Find the values of principal stresses and their directions. Also calculate the magnitude of octahedral stresses.	15
Q2	The displacement field for a body is given by,	
	$U = [(x^2 + 2z) i + (4x+2y^2 + z) j + z^2 k] 10^{-3}$	
(a)	For the above displacement field, write down the strain matrix.	8
(b)	What is the strain at (2,2,3) in the direction $n_x = 0$, $n_y == 1/\sqrt{2}$, $n_z = 1/\sqrt{2}$?	8
(c)	Determine the stress vector at $(1,2,3)$ for $E = 200 \times 10^6$ kPa and $G = 80 \times 10^6$ kPa	7
Q3	Draw a Newmark's chart. Discuss how it is used to obtain vertical stresses in soil below a loaded area.	6+4=10

MASTER OF CIVIL ENGINEERING EXAMINATION, 2017 1st Semester

SUBJECT: ADVANCED SOIL MECHANICS

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 30/100

	Use a separate Answer-Script for each part	
No. of Questions	Part II (Marks :40)	Marks
1.(a)	What are free vertical strain and equal vertical strain occuring due to radial flow towards a sand drain in a clay layer?	5
•	A uniform surcharge of $150~\rm kN/m^2$ is applied at the ground surface where the subsoil consists of a sand layer 4m thick just below ground surface followed by a clay layer 4m thick and permeability of $2.8~\rm x~10^{-7}$ mm/s and coefficient of consolidation $0.26~\rm m^2/d$. Another clay layer 4m thick , permeability $2 \times 10^{-7} \rm mm$ /s and coefficient of consolidation $0.38~\rm m^2$ /d lies following the clay layer underlain by a sand deposit. GWT is at 2m below ground surface. Determine the distribution of excess pore pressures for the clay layers after 10 days of load application by using numerical method .	15
2. (a)	What are pore pressure parameters? Mention the factors influencing these parameters. How these parameters are determined experimentally?	2+2+3 =7
(b)	Describe the different steps followed in a CU and CD test and draw the Mohr circles for different types of fine grained soils.	6
(c)	Two samples of a soil were tested in a triaxial machine. The all-round pressure maintained for the first sample was $200kN/m^2$ and failure occurred at an additional pressure of $770kN/m^2$. For the second sample the values were $500kN/m^2$ and $1370KN/m^2$ respectively. Find c and σ for the soil.	7