MASTER OF CIVIL ENGINEERING EXAMINATION, 2017 1st Semester

SUBJECT: ADVANCED HYDROLOGY & GROUND WATER

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 100/100

No. of Use a separate Answer-Script for each part									
Question	Part I (Marks :40)	Marks							
1.	Define Recurrence interval and Frequency as applied to annual floods or rainfall. The observed annual flood poeks of a transfer of the control of the contr	5							
	The observed annual flood peaks of a storm for a period of 40 years are given below: $395, 619, 766, 422, 282, 990, 705, 528, 520, 436, 697, 624, 496, 589, 598, 359, 686, 726, 527 310, 408, 721, 814, 459, 440, 632, 343, 634, 464, 373, 289, 371, 522, 342, 446, 366, 699, 560 Assuming that Gumbel's distribution fits the data, estimate 100 year and 200 year flood. Take v_n = 0.5642, \sigma_n = 1.14132$								
2.	$y_n = 0.5642$, $\sigma_n = 1.14132$ Define flood routing. What are the uses of flood routing? Differentiate between Channel routing and Reservoir routing.	2+2+2							
e)	The inflow and outflow hydrograph of a natural stream are as follows: Time (hrs) 0 6 12 18 24 30 36 42 48 54 60 Inflow (m³/s) 5 18 48 30 20 12 8 5 3 3 3 Outflow (m³/s) 5 4 10 27 36 33 27 21 15 11 7	= 6							
	Estimate the value of K and x in Muskingum equation.	14							

MASTER OF CIVIL ENGINEERING EXAMINATION 2017 (1st Semester)

ADVANCED HYDROLOGY & GROUNDWATER

Time: Three Hours

Full Marks 100 (Part I: 40 Marks Part II: 60 Marks)

Use a separate Answer-Script for each part

	stion			Part II	(60 M	arks)					Marks
<u> </u>	lo.		***								
		Answer question 1 as com									
1		Make a list of different forms of atmospheric water. Explain the measurement methods of them.									10
2	(a)	What are hydrologic data?									3
	(b)									3	
	(c)	Where the hydrologic investigation is required?									4
	(d)	Why the importance of hydrologic investigation? What is the sequence of hydrologic measurement? Explain each step.									4
_	(e)	l · · · · · · · · · · · · · · · · · · ·								4+7=11	
3	(a)	How many types of rain gauges are used for precipitation measurements? What are those? In an area the precipitation is occurring continuously for three days. What type of raingauge								1+2=3	
	(p)	in an area the precipitation	IS OCC	urring con	linuou	sly for th	ree day	s. What	type of r	aingauge	2
	(0)	may be used for estimation of	or prec	cipitation in	tensity	per hou	r basis?	Explain	the reas	on.	_
	(c) (d)	What are the important cons	detion	ions for ins	tallatio	n or rain	gauge?	101-			3
	(u)	Note down the recommen Organisation (WMO) and Inc	Noneil Nac Ci	is ioi rain Isandordo (1	gaug	E NETWO	ork as	per vvo	ria Mete	orological	3+3=6
	(e)	What are the methods for ca	ulalı ol	ianuaius (i	o 490 recipit	'). Stion ove		a2 Eval	-in tha	adla a da	4.5-0
	(f)	What is missing data in prec	initatio	ng measure	ment'	How the	a mieein	ar ⊏xpl	an the m	emods.	1+5=6 1+4=5
4	(a)	How the stream flow can be	maaa	urado Dafi	4:	FIOW III	5 111155111 <u>5</u>	y uata d	an be est	imated?	-
7	(b)	How the stream flow can be Estimate the discharge of a	neas	ured? Delli Jar Jacobia	ne rati	ig curve	vvnatit	indicate	98? -4aalbala		2+2+2=6
	(2)									W.	11
			Depth, d (m)	Mean Velocity v		ge Distan I Point at		Depth.	Mean: Velocity		
		the Stream (M)		(m/s)		e Stream		d (m)	v (m/s)		
		0	0.0	0.00		180	···	5.7	2.25		
		10	3.1	0.37	ļ	190		5.1	2.05		
		50	4.4	0.87 1.09	 	210		6.0	1.44		:
		70	5.7	1.34	+	225 240		6.5 7.0	1.32 1.20		
	j	90	4.5	1.36		255	· · · · · · · · · · · · · · · · · · ·	7.2	1.04		
		110	4.4	1.39		270		6.2	0.86		
	Ì	130	5.4	1.42		285		5.5	0.45		
		150 160	6.1 5.8	2.03	 -	300		3.6	0.26		
	(0)			2.22	<u> </u>	315		0.0	0.00		
	(c)	Draw a rating curve, on an	approp	oriate grap	h shee	t, for the	total di	scharge	estimate	ed above;	8
		assuming initial gauge read hours.	ing as	4.5m, an	a tne	ncremer	nt of war	ter leve	l is 0.2m/	hr for 12	!
5	(0)					_					Ì
5	(a)	The values of annual precip	itation	in a partic	ular a	ea from	1960 to	2009 h	ave beer	n given in	20
		the following table. Use this	data	to plot the	time	series cu	rve and	the fre	quency h	istogram.	ļ
	.	Also estimate the probability 30mm; greater than 40mm a	y Oi thi	e annual p between th	recipii	ation in	any yea	r to be	occurred	less than	
		Year 0 1	2	3	4	5	<u> </u>	1 7	1 6	T	
			37.4		36.2	37.4	6 33.2	36.2	32.9	9 35.3	
		1970 38.3 35.2 3	37.4		37.8	36.9	38.2	36.8	35.2	33.0	
	}	1980 37.5 35.7 3	36.5		28.9	33.6	35.2	38,3	39.0	38 6	
		1990 32.4 41.2 4	12.3	40.5	10.6	40.1	41.2	42.5	43.2	42.3	
		2000 30.1 43.7 4	14.1		13.2	39.0	41.8	40.0	40.9	40.1	
	(b)	Define any two: (i) Relative f	reque	ncv. (ii) Co	ndition	al proba	hility /iii				5