Master of Civil Engineering Examination, 2017 (2nd Semester)

Offshore Structures

Time 3 hours

Full marks 100

Answer two parts in two answer scripts
Part I: (60 Marks)

Answer Q1 and any two questions from the rest.

1. What is a cumulative distribution function? Define weak and strong stationary and ergodic processes. Correlate the autocorrelation function, $R_{uu}(\tau)$ and spectral density function, $S_{uu}(\omega)$ of a random process u(t).

3+5+12=20

2. Deduce expressions for Harmonic and impulse response functions and correlate them. Develop a transfer function relating wave elevation $\eta(t)$ to wave-generated force on the deck of an N-legged jack-up offshore platform where the inertia regime governs. Use

$$\dot{u} = -\frac{H}{2}\omega^2 \frac{\cosh kd}{\sinh kd} \sin \omega t.$$

4+5+11=20

- 3. State and prove Parseval's theorem. Prove that $\int_{-\infty}^{\infty} S_{uu}(\omega) d\omega = \sigma_u^2$. Correlate autocorrelation function for force, $R_{pp}(\tau)$, to that of structural response, $R_{vv}(\tau)$. 7+7+6=20
- 4. Deduce the following relation using Rayleigh's method, to find natural frequency of a 3-legged jack-up offshore rig with deck slab of mass m_d , length of legs, l, and depth of sea, d, while other variables have usual meanings:

$$\omega_{o} = \left[\frac{\frac{\pi^{2}}{8l} \left(\frac{3\pi^{2} EI}{l^{2}} \right) - m_{d} g}{3\overline{m}l' + 3\overline{m}_{o}l'' + m_{d}} \right]^{1/2}, \text{ with}$$

$$l' = 3d/8 - (l/2\pi)\sin(\pi d/l) + (l/16\pi)\sin(2\pi d/l)$$
, and $l'' = 3(l-d)/8 + (l/2\pi)\sin(\pi d/l) - (l/16\pi)\sin(2\pi d/l)$.

20

M.C.E. 1ST YEAR 2ND SEMESTER EXAM 2017

(1st./ 2nd Semester / Repeat / Supplementary / Annual / Bianual)

SUBJECT: Offshore Structures

Full Marks 40

Time: Two hours/Three hours/Four hours/ Six hours

Use a separate Answer-Script for each part

No. of Question	PART – II	No.
1.i.	What is fatigue limit? On which factors does fatigue limit of a material depends? Explain the dispersion equation.	5+5+10 =20
iii.	Consider a particle initially 10m below SWL and 20m above sea bed. After the wave motion	
	is established (Time period = 9sec , Wave height =3.5m) , what is the size and character of the orbit of the particle?	
2.	A single storied fixed base jack up platform made of 25mm thick steel pipes is loaded with	
	maximum wave height H_{max} =4.8 m with corresponding period of 7.0s. Modulus of elasticity	
) 	= 2.1X10 ⁶ kg/cm ² , unit weight for steel is 7.83t/m ³ , and that of seawater is 1.03 t/m ³ . Add	
	upper quarter of the column mass with deck mass. The structure and sea level is shown	
	below. Use Morison's equation to estimate the wave loading and find deterministic	20
!	response with a time interval of 0.01s for four cycles using $\xi=1.5\%$. Here $ F_h $ is given by	
; ; ;	$\pi \gamma_w D \frac{H^2 L}{T^2} \left[\frac{\pi D}{4H} c_m K_2 \sin 2\pi \left(\frac{x}{l} - \frac{t}{T} \right) + c_d K_1 \left \cos 2\pi \left(\frac{x}{l} - \frac{t}{T} \right) \right \cos 2\pi \left(\frac{x}{l} - \frac{t}{T} \right) \right]$	
	$K_1 = \frac{4\pi s_2/L - 4\pi s_1/L + \sinh(4\pi s_2/L) - \sinh(4\pi s_1/L)}{16[\sinh(2\pi d/L)]^2}$, and	
	$K_2 = \frac{\sinh(2\pi s_2/L) - \sinh(2\pi s_1/L)}{\sinh(2\pi d/L)}$, where all terms have their usual meaning.	
	SWL SWL O.5m	
	d S _s s ₁ s ₁ lóm 3m	