Ref. No.: EX/PG/CE/T/11/A/6/2017

15 + 10

M. CIVIL ENGG. 1ST SEM EXAM – 2017

Subject: DYNAMICS OF STRUCTURE Time: Three (3) hours Full Marks: 100

Answer any four (4)

1. Use Laplace transform method to determine the response of an (i) undamped (ii) underdamped 1 – DOF system of natural frequency ω_n and mass m subject to a constant force F_0 . Given

$$\mathcal{L}^{-1} \frac{1}{s} = 1; \mathcal{L}^{-1} \frac{s}{s^2 + \omega^2} = \cos \omega t \text{ and } \mathcal{L}^{-1} \frac{1}{s - \alpha} = e^{\alpha t}$$
 12.5 x 2

- 2. Define Response Spectrum. Develop the response spectrum for a SDOF system subjected to a half sine wave of magnitude F_0 and time period $2t_0$. Assume any other relevant data as needed. 5+20
- a) Develop the expression for transmissibility in a base excited system and plot the transmissibility vs frequency ratio for the same for different damping ratio.
 b) A 45 kg machine is placed at the end of a 1.6 m cantilever beam of elastic modulus 200 GPa and moment of inertia 1.6 x 10⁻⁵ m⁴. As it operates the machine produces a harmonic force of magnitude of 25 N. At what operating speed will the machine's steady state
- 4. Develop the element stiffness matrix and the element mass matrix of an Euler Bernoulli beam element from the energy principle. Hence, write the assembled stiffness and mass matrix for a beam discretized using two numbers of 2 node element.

 10-10 + 5

amplitude be less than 0.2 mm?

5. Develop the Lagrange Equation from the Extended Hamiltonian Principle for a linear conservative dynamic system. Hence develop the governing differential equation for a transversely vibrating beam and obtain the fundamental frequency and mode shape for a beam simply supported at both ends.
10 + 10 + 5