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Abstract 
 

In the present work, a new analysis model based on the Frobenius power 

series is developed for the thermal analysis of an annular disc fin (ADF). A 

linear variation of temperature dependent internal volumetric heat 

generation inside the fin has been taken into account. The temperature 

distribution in fins has been determined by solving the homogeneous 

nonlinear governing differential equation with the help of infinite Frobenius 

power series. The thermal performance has been evaluated over a wide 

range of thermo-geometric parameters. Results of thermal analysis has been 

validated by finite difference method. Heat transfer analysis has been carried 

out for both the convected tip and insulated tip fin. From the result, it has 

been observed that the maximum fin performance has been achieved at a 

particular value of thermo-geometric parameter under internal heat 

generation which can be the practical design condition to operate fins for 

enhancing heat transfer rate. Also a convected tip of ADF is giving more 

advantages over insulated tip for the thermal performance with the range of 

Biot number value. Maximum fin heat transfer rate has been optimized using 

Lagrange multiplier technique. Optimized curves are obtained for various 

thermo-geometric parameters. These optimized curves are generally 

converging.  
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1. INTRODUCTION 

 

Avoiding overheating and increasing the life span of components of various thermal 

application fins is used. It is an extended surface equipped on the component to enhancing the 

heat transfer rate from the thermal system to the surrounding environment. In the design and 

construction of various types of heat-transfer equipment and components such as air 

conditioner, refrigerator, superheaters, automobile, power plants, heat exchangers, 

convectional furnaces, economizers, gas turbines, chemical processing equipment, oil 

carrying pipelines, computer processors, electrical chips, etc., fins are used to implement the 

flow of heat between a source (primary surface) and sink. Kern and Kraus1 give’s the three 

basic geometries of fins. They are longitudinal fin, annular or radial fin and pin fin or spines 

respectively. Based on the primary surface of the heat transfer component these fins are used. 

Longitudinal fins are used when the fluid flowing parallel to the axis on the thermal system. 

Pin fins or spines are the rod protruding from a plane surface used to increase the surface area 

(when the heat transfer coefficient of the fluid is relatively low) and consequently to increase 

the total heat transfer rate. On the cylindrical surface annular or radial fins are suitable the 

most.Apart from various types of fins with different geometries used, annular disk fin is 

widely applied in heat transfer equipment’s due to its ease of design and fabrication. A more 

realistic design of fin need a close assumptions to be perfectly efficient based on working 

condition. Internal heat generation can be considered temperature dependent which is very 

realistic for the fins as applied on electric current carrying conductor, nuclear rods exposing 

to gamma rays or any other heat generating components of thermal systems.  
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2. LITERATURE REVIEW 

 Initially through a measurement, thermal conductivities of the long metallic rods of iron and 

copper experimentally determined by Stewart2 using the temperature distribution in the rod. 

For any of the above fin constant thickness or straight profile is very common to use as its 

design and casting process is easier. Parsons and Harper3 derived an equation for the 

efficiency of straight fins of constant thickness in the course of a paper on airplane-engine 

radiators. Harper and Brown4 in connection with air-cooled aircraft engines investigated the 

equation of the efficiency of straight fins of constant thickness, wedge-shaped straight fins, 

and annular fins of constant thickness. They also evaluated the errors involved in the 

assumptions for the investigations. Schmidt5, first covered the same three types of fin from 

the standpoint of material economy. He stated that the least metal is required for given 

conditions if the temperature gradient is linear, and showed how the thickness of each type of 

fin must vary to produce this result. Finding, in general, that the calculated shapes were 

impractical to manufacture, he proceeded to show the optimum dimensions for straight and 

annular fins of constant thickness and for wedge-shaped straight fins under given operating 

conditions. Murray6 presented equations for the temperature gradient and the effectiveness of 

annular fins of constant thickness with a symmetrical temperature distribution around the 

base of the fin.Carrier and Anderson7 discussed straight fins of constant thickness, annular 

fins of constant thickness, and annular fins of constant cross-sectional area, presenting 

equations for the fin efficiency of each. In the latter two cases the solutions are in the form of 

infinite series. 

      However the performance of a fin is reduces towards the fin tip due to the reduction of 

temperature from base to tip. It is very necessary to save the material from both the 
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economical background as the performance and the cost are the basic criteria for design a fin.  

This point of view had let various exercises to optimization a fin dimension. Two approaches 

have been developed to analyse the optimum dimension of the fin. First criterion gives for the 

particular amount of heat transfer, the fin shape has to optimize such that the fin volume will 

be minimum. In contrast to the criterion the fin profile becomes a curve. Second one for a 

given shape of fin profile, satisfying the required condition of heat transfer, the fin dimension 

has to optimize such that the volume will be minimum. Using the calculus of variation, 

Duffin8 exhibits a rigorous proof of the criteria of Schmidt5. Both Schmidt5 and Duffin8 

estimated the surface area neglecting the curvature fin profile. Liu9 extended the variational 

principle to find out the optimum profile of fins with internal heat generation. Liu10 and 

Wilkins11 addressed for the optimization of radiating fins. Solov”ev12 determined the 

optimum radiator fin profile. From the above literature works, it can be indicated that the 

above works were formulated based on the “length of arc idealization (LAI)”. LAI was used 

for optimizing fin shapes under convecting, radiating, convective-radiating condition, for fins 

with heat generation and for variable thermal conductivity. The correct formulation for the 

optimization of longitudinal fin with the elimination of LAI and a different profile rather than 

Duffin8 has been proposed using numerical integration by Maday13. It is interesting to note 

that an optimum convecting fin neither has a linear temperature profile nor possesses a 

concave parabolic shape suggested by Maday13. The profile shape contains a number of 

ripples denoted as wavy fin. Further this analysis has been extended for radial fin by Guceri 

and Maday14.Later Razelos and Imre15 using Pontryagin's minimum principle to evaluate the 

minimum mass of convective fins with variable heat transfer coefficient.  
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  From the above literature review it has been conclude that the resulting fin profile achieved, 

was difficult to manufacture from the first approach, so the second approach has been 

considered for the analysing the fin dimension. Over the years many researches has been 

carried out to enhance the fin performance based on second approach as it is very popular. 

Following the second approach analysis has been carried out on straight or constant thickness 

as well as triangular profile to design the fin with least volume of material. For different fin 

profiles, optimizational steps have been thoroughly demonstrated by Aziz16. Annular fins are 

important for the fin-tube heat exchangers. And most of the heat exchangers are depend on 

the performance of the annular fin. Chambers and Somers17 determined the performance of 

an annular fin with a rectangular profile for boundary conditions consisting of a constant 

temperature at the fin base and insulation at the fin tip. Sparrow and Niewerth18 developed a 

numerical linearized solution for the efficiency of a radiative-convective fins. Smith and 

Sauce19 provide the analytical solution for the efficiency of the annular fin with triangular 

profile by Frobenius method. Whereas, Sikka and Iqbal20 adopted a finite-difference 

procedure to analyze the effectiveness of radiative convective fins. A general analysis has 

been carried out for arbitrary fin profile with coordinate dependent internal heat generation, 

thermal conductivity and heat transfer coefficient by Melese and Willkins21. Aziz et al.22 

studied a uniformly thick radial fin with convective heating at the base and convective-

radiative cooling at the tip for homogeneous and functionally graded materials, with internal 

heat generation.  

     In most of the application the optimum fin shape is very important from both the 

economical as well as performance criterion. The optimum dimensions of circular fins with 

different profiles and temperature dependent thermal conductivity, has been determined by 
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Zubair et al.23. An increasing in heat transfer rate through the optimum profile fin has been 

found almost 20% as compare to the constant thickness fin. As the annular fin with constant 

thickness is easy to design and fabrication, it is used widely in various applications.  Ahmadi 

and Razani24 derive the expressions of optimum profiles for straight and circular fins, with 

variable thermal conductivity and arbitrary heat generation per unit width of the fin. 

Optimization studies for radial fins of specific profiles have been studied byLaor and 

Kalman25, Yu and Chen26, Heggs and Ooi27 andLai et al.28. Kundu and Das29 described a 

generalized methodology to determine the optimum design of thin fins with uniform 

volumetric heat generation. A genetic algorithm for fin profile optimization was proposed by 

Fabbri30. Kundu and Lee31 demonstrated a novel analysis which is based on the calculus of 

variation to determine the smallest envelope fin shape for wet fins with a nonlinear mode of 

surface transport. Hanin and Campo32 described an analysis on optimum shape of straight fin 

by minimizing the volume for a given amount of heat transfer per unit width. Kundu and 

Barman33 established an analysis based on a Frobenius series expansion to determine the 

performance and optimum dimensions of annular disc fins under dehumidifying conditions 

based on linear relationships between the temperature and humidity. Peng and Chen34used a 

hybrid numerical technique based on the differential transform method and finite difference 

to analyse an annular disc fin for temperature dependent thermal conductivity. The 

temperature distribution and fin efficiency of annular fins with different cross sectional area 

subjected to heat and mass transfer were analysed by Sharqawy et al.35. Moinuddin et 

al.36extended this analysis to determine the optimum dimensions. Campo and 

Morrone37presented a thermal analysis using simple computational procedure of annular fins 

with tapered cross section. Minkler and Rouleau38developed analytical solutions for the 
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temperature distribution and optimum fin parameters, and examined a convective fin with 

uniform internal heat generation. As economy is the consideration of design so Kundu and 

Das39analysed the temperature distribution of a concentric annular fin with a step change in 

thickness for a constant heat generation per unit volume. Bessel functions were used to 

determine the solution. 

All the above analysis was concerned with annular fin which is constant or variable 

thickness. It is very easy to fabricate the constant thickness compared to a variable one. The 

research has been made on annular fins for various method and assuming different thermal 

properties. Some of the literature assumed constant internal heat generation and few of them 

considered it for temperature dependent. The assumption of temperature dependent heat 

generation is very closer to an actual case to study. In addition, no exact analysis has been 

presented to determine heat transfer in annular fins based on the above design condition.  

Both economic consideration and ease in fabrication of annular disc fin have been considered 

to study the thermal performance in the present work. Convective heat transfer process is 

considered here. The internal heat generation is assumed to be linearly dependent on 

temperature. The Frobenius power series expansion approach has been used to solve the 

governing for the temperature in fins analytically. The present analysis is validated with the 

numerical values.   
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3. Mathematical Formulation 

The schematic diagram of annular fin with rectangular profilecircumscribing a cylindrical 

tube has been depicted in Fig. 1. The fin dimensions are taken such that the thickness is t2 , 

and inner and outer radius are
1r  and 

2r respectively. Before analyzing the heat transfer 

analysis of an annular disk fin (ADF), a few assumptions has been considered here. The 

following assumptions are 

 

 
Figure 1: Schematic diagram of annular fin 

 

1. Heat transfer is taking place at steady state condition.                

2. Base temperature of the ADF is assumed to be constant. 

3. Surrounding temperature is constant. 

4. Only convective and conductive modes of heat transfer take into consideration. 
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5. Heat conduction is taking place only radial direction only, as the thickness is very 

small, heat transfer doesn’t taken place in vertical direction. 

6. Volumetric internal heat generation
'''q  is linearly temperature dependent. 

7. Thermal conductivity ‘ k ’ and convective heat transfer coefficient ‘ h ’ are assumed 

constant. 

Following the assumptions for the steady state heat transfer analysis, the governing equation 

of the ADF can be written by energy balance for a differential control volume of the fin in 

polar coordinate system as follows 

 







TT

kt

hr

k

rq

dR

dT
r

'''

dr

d
                                                                                                     (1) 

The problem is considered for the annular fin has constant base temperature with 

convected tip fin. According to this consideration, the boundary conditions for the heat 

transfer analysis can be written as following  

           at 1r r ;   bTT                                                                                                           (2a) 

           at 2r r ;   )(  TThdrdTk t                                                                                 (2b) 

where bT is defined as base temperature of the ADF. Equation (1) has the term volumetric 

heat generation which is considered linearly temperature dependent. 

 '''

0 1q q T T 
                                                                                                                    (3) 

Substituting the equation (3) in equation (1) and choosing appropriate dimensionless 

parameter equation (1) can be expressed in dimensionless form as follow 
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  


RZRQ
dR

d
R

dR

d 2

00 1 







                                                                           (4)  

where  

2

0 2
0 0 2

2 2

; ; ; ( ); ;
( )

b

b b

q rT Tr Bi t
R Q T T Z

r T T k T T r
   






 


      

 
                 (5)                                

Converting the convenient boundary conditions into non-dimensional form using the non-

dimensional parameter from equation (5), equation (2a) and (2b) are formed as following 

at 1, 1R R                                                                                                            (6a)    

 

at 


tBi
dR

d
R  ,1                                                                                                                          (6b)                                                                                           

The non-dimensionalised governing differential equation (4) is transform to a homogeneous 

equation. It has been solved using a new approach is called “Frobenius expansion series”. 

02

12

2

 


RZ
dR

d

dR

d
R                                                                                                                     (7) 

where, 

;1
2

0

02

0

2

1 









Z

Q
ZZ


2

00

2

00

1 ZQ

ZQ





                                                                    (8)                                                                        

The newly transformed homogeneous governing equation (6) boundary conditions changes to  

01 ,   RRat                                                                                                                           (9a) 

 01;1 


 tt BiBi
dR

d
Rat                                                                                         (9b)                                                                
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where,     
2

00

2

00
0

1
1

ZQ

ZQ





                                                                                                           (10)  

         so   01                                                                                                 (11) 

The transformed governing linear homogeneous differential equation (7) solution has been 

approximated semi-analytically by the approach ofFrobenius series expansion. According to 

the explanation of Frobenius series expansion, temperature can be expressed in power series 

as shown 







0n

sn

n Ra                                                                                                                                 (12) 

Replacing the equation (12) in equation (7), the following is derived 

     01
0 2

1

2

2

1

1

0

1   



















n n

sn

n

sn

n

n

sn

n RaZRsnaRsnsna                              (13) 

Where the coefficient of the series na  can be expressed as a function of 0a &
1a  , for 2n . 

Solving the equation (13) for 0n , the value of the roots comes as 0,0s . Considering these 

values of s  all the coefficients has been calculated. For 0n and 1, 0a and
1a   have been 

evaluated from the above equation (13), whereas 00 a  and
1a =0. For  2n  the value of 

na  is calculated in dimensionless as 

  22

2

1



 nn A

sn

Z
A                                                                                                                           (14) 

As the two roots are equal )0,0( s the solution of the equation (13) in Frobenius method 

gives 
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000

21



















 

s

sn

n

n

n

n

n RA
ds

d
CRaC                                                                                   (15) 

where 
21& CC are two constants to be determined by using boundary conditions. Progressing 

further calculation it arrives to  

  





















0 0 0

21 ln
n n n

n

n

n

n

n

n RRARCCRAC                                                                 (16) 

 where, 

22

2

1
23

2

12
  nnn C

n

Z
A

n

Z
C                                                                                            (17)  

 

So the values of the nC  can be calculated as the values of nA evaluated earlier from the 

equation (14). 

Now using equations (9a) and (9b) the values of 
1C &

2C is evaluated from equation (16). 

Replacing the value of 
1C &

2C in the equation (16), the final mathematical expression of non-

dimensional temperaturedistribution has been found out as following 

NMPL

mNmKPpKMpL




0                                                                             (18)         

where, 

0

0 )1(
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Here the equation (18) gives the non-dimensional temperature distribution. Now the 

dissipated heat transfer rate from the fin can be define by the formulation as below 
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Integrating the equation (20) using the equation of (11), yields the heat transfer equation 
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Where these value of constants 1C  and 2C are evaluated earlier. And the second term is 

considered for convected tip otherwise the it is zero for insulated tip. To determine the fin 

efficiency    and fin effectiveness    ideal heat transfer rate and heat transfer rate through 

the same base area of for the no-fin condition is determined from the following expressions, 

respectively. 
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                                                                                                        (23)     

where iq defines ideal heat transfer rate and iQ is the non-dimensional heat transfer rate, 

similarly bq is the heat transfer rate from the base and bQ  is the non-dimensional heat transfer 
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rate from the base. The maximum temperature max  for cooling fins always occurs at the fin 

base for cases without heat generation in the fin. However, this may not be true with heat 

generation, depending on the rate. In such cases, a search technique may be required to 

determine the maximum temperature and calculate the fin efficiency. 

Therefore the calculation of efficiency can be written as follows 

i

Q

Q
                                                                                                                (24) 

And from the definition of effectiveness it is calculated as  

b

Q

Q
                                                                                                                  (25) 
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4.   RESULTS AND DISCUSSION 

 

Using above analysis the thermal performances of annular disc fin (ADF) with constant 

thickness has been studied for wide variation of thermo-geometric parameter. The fin 

temperature distribution, efficiency and effectiveness are analysed with various parameter for 

both insulated and convective tip fin. As well as the optimization has been carried out to 

evaluate its applicability based on the cost and materialistic demand. For the validation, the 

present analysis has been compared with the numerical values. The figures shows here for the 

performances are well realistic to have interest for examine. Optimizational figures are much 

practical to suit in applications effectively. 
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Fig. 2 Validation of the proposed analysis with a numerical analysis based on the finite 

difference method. 
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Considering no internal heat generation for the insulated tip fin, the non-dimensional 

temperature distributional profile along the radial direction for a given fin parameter 0Z has 

been depicted in Fig. 2. The value of 0Z  is considered very less as shown in fig 2a when the 

fin temperature remain constant throughout the radius. It is an ideal case. The Frobenius 

analysis gives the same result as depicted by line in the Fig. 2a. Non-dimensional temperature 

distribution for a practical case shows the decreasing of radial temperature with a designable 

value 0Z = 2 as shown in Fig.2b. The analytical present approach gives a very closer result 

with the numerical one. 

Fig. 3 has been plotted when the internal heat generation has been considered for finding 

out the non-dimensional temperature distribution. This analysis has been carried out using the 

value of non-dimensional internal heat generation coefficient 01.0 . It is very much 

practical from a designable value of a parameter 20 Z . From this figure, for the insulated 

tip, the temperature at any radius of the annular fin is always higher than the convected tip 

fin. The heat dissipation from a fin with the convected tip is at a higher rate due to an extra 

heat transferring through the tip surface instead of the insulated tip. The temperature at the 

base of the fin is same for both the cases and the difference of non-dimensional temperature 

increases gradually along the radial direction. This result has been predicted by the finite 

difference method also and a good agreement of results has been found. 
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Fig. 3 Temperature distribution in an annular disc fin with internal heat generation determined 

by proposed analysis and numerical method 

 

Earlier we discussed the temperature profile for both the convected tip and insulated tip fin 

under a particular condition. Now the temperature profile dependency of convected tip fin on 

the radius ratio has been provided on figure 4 so do we have the clear idea of an ADF with 

convective tip condition as the analysis done based on a practical case ( 0Z =2). Keeping 

internal heat generation and outer radius constant, the inner radius is increasing. At 
1R =0.2, 

the temperature profile has been shown. As the radius ratio increased the fin surface area 

reduced to only pipe surface when the radius ratio becomes 1. As the surface area reduced the 

heat transfer rate from the fin surface reduced respectively. So the temperature distribution 

inside the fin increases due to this decrease inheat dissipation rate. 
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Fig. 4 Temperature distribution in an annular disc fin as a function of dimensionless inner 

radius 

 

Later in the figure 5 temperature distributions in an ADF with insulated tip has been depicted. 

Here the internal heat generation is increasing gradually for the insulated tip fin which is 

depicted in Fig. 5. This case may be a practical case where 0Z has taken 2 and the non-

dimensional internal heat generation coefficient is considered 01.0 . It is obvious that the 

ADF’s temperature will decrease towards the tip for low value of internal heat generation. As 

the value of internal heat generation has been increased gradually, keeping other parameter 

same, it has been seen from analysis the temperature of the fin increases towards tip compare 

to a low value of heat generation. At a particular amount of heat generation ( 40 Q ) the 

temperature remain constant with the base temperature along the fin. As the value of non-

dimensional internal generation increases from the value of 4, the non-dimensional 



 
 
 
 
 
 

 

 23 
 

temperature increases from base to tip.  The trend may be due to the rate of internal heat 

generation getting higher than the rate of heat dissipation from the fin surface. 
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Fig. 5 Effect of internal heat generation on temperature distribution 

 

 As the temperature distribution in the ADF with both the insulated tip and convected tip has 

been provided earlier, analysis of efficiency and effectiveness of the fin can be understood 

easily. The efficiency & effectiveness of the ADF with insulated tip, have been depicted in 

the Fig 6. Both the efficiency & effectiveness curves have been drawn with varying Biot 

number considering a specific thermo-geometric parameter. At the condition of Biot no. is 

zero, for no internal heat generation the efficiency is maximum due to low conduction 

resistance for heat flow. This condition allows the highest fin efficiency with 100%. With a 
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definite amount of heat generation, efficiency increases initially. Then the efficiency reaches 

at its maximum value, close to 90 percent or more for an optimum Biot no. as depicted in Fig. 

6a. Efficiency drops as the Biot no. increase further from this optimum value for a certain 

amount of heat generation. With the increase in heat generation, initially the efficiency drops 

accordingly but as the Biot no. moves rightward efficiency increases. It is very good in nature 

for the practical application to design accordingly.  Effectiveness curves have been drawn for 

different heat generation, keeping the other parameter same as shown in Fig. 6b. Each 

effectiveness curves have downwards slope with the increase of Biot no. At an ideal 

condition of thermo-geometric parameter ADF gives the maximum effectiveness. But at the 

same condition of thermo-geometric parameter of the fin effectiveness rises as the internal 

heat generation increases. It is shown an opposite behaviour of efficiency curve in Fig. 6b. 

Effectiveness increases with increase of internal heat generation and decrease as the Biot 

number increases.  

       Here both the efficiency & effectiveness has been plotted for convected tip of ADF as 

displayed in fig.7. Keeping other parameter same as the earlier case, the value of non-

dimensional internal heat generation is taken from 0 to 5. At the no internal heat generation 

and zero Biot no., efficiency is found to be around 83 %. But when heat generation is 

considered in the ADF with Biot no is zero, the efficiency maximum but less than 100%. This 

id due to the temperature distribution in the ADF along the radius is more in case of heat 

generation condition compare to no heat generation condition. In convected tip fin the 

temperature distribution is shown in Fig.3. As the temperature variation in convected tip fin 

along the radial direction is more compare to the insulated tip fin, the efficiency drops. 

Unlike insulated tip fin, Biot number range for maximum efficiency gradually increase with 
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the internal heat generation. This is an interesting observation found. Also the effectiveness 

curves has been show for the ADF with convected tip in fig. 7b. It is found from the analysis 

that the effectiveness decreases with the rightward direction of Biot no. Effectiveness value 

enhances for convected tip significantly for internal heat generation as depicted in fig. 7b. 

Unlike insulated tip ADF, effectiveness is very much higher in convected tip fin. For an 

example from the observation it is found that for an internal heat generation 0 to 5, at 𝐵𝑖 =

0.06effectiveness is belonging from 4.5 to 9.2 approximately for insulated tip ADF, but in 

case of convected tip condition effectiveness is belonging from 7 to 16 for the same 

condition. Therefore it is suggested to analyse fin heat transfer based on the convected tip if 

internal heat generation is present. 
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Fig. 6 Fin performance as a function of Biot number and internal heat generation for insulated 

tip condition 
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(b) Fin effectiveness 

Fig. 7 Fin performance as a function of Biot number and internal heat generation for convected 

tip condition, 0.2tBi   
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Earlier in the discussion of results of efficiency and effectiveness of the ADF with both 

insulated tip and convected tip has been checked out with the variation of Biot no. using 

different heat generation rate. Whereas ADF with convected tip give advantages instead the 

insulated tip. So here the depicted fig.8 has been provided the information about the 

convected tip of the ADF’s efficiency and effectiveness with the change in Biot no. but with 

the effect of heat generation parameter. The non-dimensional coefficient of the internal heat 

generation "𝛽” is considered 0 and 0.1 for the study. For the value𝛽 = 0, the fin has constant 

internal heat generation. It doesn’t change upon the variation of temperature. But in some 

case internal heat generation does depend on temperature. Whereas 𝛽 = 0.1 considered for 

this case to study the performance. Here in the fig.8a for a certain radius ratio of the 

convected tip fin with constant heat generation gives less efficiency compare to variable heat 

generation. The efficiency remains constant as close to 98% for the Biot no. range0.01 to 

0.04 for the constant heat generation. But due to increase in internal heat generation from the 

ADF, when  𝛽 = 0.1 considered, the efficiency increases with the Biot no. range and close to 

0.05. After such value of Biot no. the efficiency decreases with the increasing value of Biot 

no. for the cases. So the important thing has been got from this study is the effect of internal 

heat generation parameter with the value of 𝛽 = 0.1 gives the efficiency same as𝛽 = 0, but 

with a greater value Biot no, which helps to simulate the analysis over practical approach. 

Similarly the effectiveness has been studied for the same condition of thermo-geometric 

parameter for the ADF with convected tip. It is found to be decreases with the rise of Biot no. 

as we have seen earlier in the fig.7b. But the effect of heat generation parameter with nonzero 

value have improved performance compare to the value𝛽 = 0. So this advantage of improved 

performance for the heat generation parameter has greater influence over this study more. 
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Fig. 8 Influence of variable heat generation parameter on fin performances 
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Earlier in the fig.7a we have seen the efficiency is increasing as the value of internal heat 

generation increased under a specified condition on convected tip fin. Along with that we 

also have discussed the effect of ADF performance under the heat generation parameter. Next 

we would like to study this ADF performance for another geometric parameter is radius ratio. 

Fig. 8a totally describe the efficiency curve under above mentioned condition, where we can 

found out the condition of getting the maximum efficiency for a certain radius ratio. Using 

those condition of Fig. 7a and the value of dimensionless internal heat generation keeping 5, 

we have got the curve for 4.0R . In the fig. 9a efficiency is close to 95% for a range up to of 

Biot no. 0.04 for any radius ratio. It is very good character of observed in the study. As we 

know reducing the radius ratio increases surface area. Temperature inside the fin also 

decreases accordingly due to enhance in heat transfer rate. As the temperature variation 

increases with decrease in radius ratio so the efficiency drops. In case of radius ratio increase 

from 0.4 to 0.9 the surface area of fin reduced. So the temperature variation inside the fin is 

lessening towards the increasing radius ratio, which causing in enhancing the efficiency. This 

result is very interesting to have risen in efficiency with the low volume of material of the 

ADF as the Biot no. is increases too. As well the effectiveness has been found out for the 

ADF with convected tip fin. As effectiveness is an opposite character to efficiency, it drops 

with increase in radius ratio. 
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Fig. 9 Effect of dimensionless inner radius on fin performances for an annular disc fin having 

internal heat generation 
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5. Optimization Analysis  

5.1 Optimization Procedure 

The optimization study of any fin can be done either by maximizing the rate of heat transfer 

for a given fin volume or by minimizing fin volume for a given heat transfer rate but the 

results obtained from both the optimization schemes yield the same value. However, selection 

of the objective function and constraint equations depends upon the requirement of a design. 

In the present study, an optimization model is proposed in a generalized way 

with satisfying the above fact. The volume V of an ASF can be expressed in dimensionless 

form as 

 2

13 3

1 1

1
2

V
U R

r R




  

                                                                                      (26) 

Also the equation (21) is dependent on parameter 1 &R 
.  From the equations (27) and (26) 

expressions of heat transfer rate and volume it can be demonstrated that the optimum design 

of the fin assembly depends upon the geometric parameters 1R  and  for a design condition. 

The optimality criterion is then derived from Euler equations after eliminating the Lagrange 

multiplier 

     1 1 0Q U R Q R U                                                                                 (27) 

In order to expand the equation (27), equation (21) and (26) is replaced. It gives 
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                                    (28) 

In order to determine the optimum parameters, Eq. (28) can be solved along with the 

constraint either heat transfer rate (Eq. (21)) or fin volume (Eq. (26)) depending upon the 

requirement ofa design. Thus the constraint equation can be formed by combiningEqs. (21) 

and (26) as follows: 
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                                                                                     (29) 

A numerical scheme, namely Newton-Raphson iterative method is adopted for solving eqs. 

(28) & (29). For finding the multiple roots by Newton-Raphson method, it is worthy to 

mention that the initial value for the roots have been taken cautiously so that the convergence 

criteria for each iteration has been specified (29).For the present problem, a brief outline of 

the generalized Newton–Raphson method and the convergence criteria for each 

step of iterations are described in the following paragraph.The optimum values of design 

variables such as 1R and  can be approximated from the Newton–Raphson formula by using 

justlyprevious iterative or initial guess values of these variables. 
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                                                        (30) 

where J  defines jacobian matrix which can be expressed as 
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                                                                       (31) 

The subscript ‘‘j” denotes the value of jth iteration. The convergence 

criteria given below at each step of iteration must be satisfied. 

Max 1 2, 1                                                                                                       (32) 

where the expression of 1 2,  can be written as 
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The above procedure are repeated till the geometric roots 1R   and   are obtained to a desire accuracy. 
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5.2 Results and Discussion 

Earlier we have discussed the results of the fin performance based on various thermo-

geometric parameter. It shows that ADF with convected tip has got more priority to perform 

over insulated tip. So here we have evaluated the optimum dimension of the ADF with 

convected tip for the maximum thermal performance. Below fig.10 provided the results for 

maximum amount of heat transfer rate for a certain volume of fin material. For a particular 

amount of heat generation in the convected tip within the ADF gives the curves for maximum 

heat transfer rate with the varying radius ratio. Different curves have been plot for different 

non-dimensional volume of fin. These curve having a low value of heat transfer rate but as 

the radius ratio increasing rightwards the heat transfer rate has become maximum at a certain 

radius ratio. It is decreasing after the pick value of the curve. Each curve has a pick point 

which has been shown by drawing a locus passing through these pick points. As the 

dimensionless volume of the fin is decreasing, the pick point is forwarding right. So does the 

value of radius ratio increasing means the fin surface areas reduced too. 
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Fig. 10 Maximum heat transfer rate in an annular fin as a function of fin volume 

 

Here the depicted fig. 11, we have optimize the Biot no. for maximum heat transfer rate for 

constant volume of ADF with convected tip. For a constant value of heat generation 

coefficient and tip Biot no. this analysis has been carried out considering the dimensionless 

heat generation rate at surrounding temperature is 1.0. This graph has been shown that 

maximum heat transfer rate plotted against the radius ratio for different Biot no. The curves 

are similar to the previous fig. 10. Here also the pick points of each curve have located by a 

locus, named as loci of maximum heat transfer. It can be noticed for each curve that the 

maximum heat transfer rate is decreases as the Biot no increases. For a value of 003.0Bi  

gives the highest amount of heat transfer rate close to the value of 0.35. 
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Fig. 11 Maximum heat transfer rate as a function of Bi for a constraint fin volume 

 

The below fig. 12 has shown to optimize the ADF with convected tip for maximum heat 

transfer like above fig. shown. But this fig. 12 has described the analysed curve like valley 

having a pick, where the ADF dimensionless volume, Biot no. and tip Biot no. are considered 

constant. Each curve have been plotted for different value of dimensionless heat generation 

parameter with the consideration of heat generation coefficient value of 0.1. Optimum value 

of radius ratio can be evaluated form the diagram by drawing a vertical line to the radius ratio 

axis from the pick points of the curve. These entire pick points are joined by a locus as 

defined loci of maximum heat transfer. We can see the figure gives a curve with no internal 

heat generation gives the very less amount of heat transfer rate. But as the heat generation is 

having inside the fin, the maximum heat transfer rate increasing like exponentially. So the 
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change of maximum heat transfer rate is so more with the change in radius ratio gives when 

the internal heat generation present. As the value of dimensionless internal heat generation is 

increasing, it is giving the maximum amount of heat transfer rate. Drawing the vertical line to 

the radius ratio axis from the pick point from each curve, gives the optimum value of radius 

ratio. So the study of the effect of internal heat generation gives the very likely optimum 

result. 
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Fig. 12 Maximum heat transfer rate as a function of heat generation parameter Q0 for a constraint 

fin volume under a design condition 

 

Above all those figures give the optimum dimension of the geometry of ADF based on the 

various thermo-geometric parameters. The figure 12 described the optimum dimension based 

on the effect of internal heat generation parameter. No we will have the optimization based 



 
 
 
 
 
 

 

 40 
 

on the effect of variable heat generation coefficient as described below fig. 13. Earlier in 

fig.8, we have the results with improved effect on the thermal performance of the ADF. Both 

the effectiveness and efficiency increases with the nonzero value of the coefficient of internal 

heat generation. Here this analysis for a convected tip ADF with constant volume and 

constant Biot no. has been considered. A constant heat generation parameter 𝑄0with the 

variable coefficient of heat generation gives the below curves with a pick value for each 

coefficient. We can see the negative value of the coefficient having the curve of heat transfer 

rate below the greater value of the coefficient. All this pick points are shown by plotting a 

locus through it. The maximum value of heat transfer rate increasing very fast with the 

increase of the coefficient of the heat generation.  

0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

-0.5

 

 

Q

R
1

=-1.0

Loci of maximum 

heat transfer

U=0.1, Bi=0.01

Q
0
=2.0, Bi

1
=0.001

 

 

Fig. 13 Influence of variable heat generation parameter β on maximum heat transfer rate for a 

constraint fin volume 
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We have figure out the maximum possible heat transfer can take place through the fin for an 

optimum dimension of the ADF through various effective parameters. The last one we are 

considering for maximum heat transfer rate is tip Biot no. Here the tip loss can be changeable 

due to the variable convective heat transfer coefficient. Constant volume of the fin with the 

constant heat generation parameter and constant coefficient of heat generation parameter has 

been considered to plotting the curve. Tip loss is more when the𝐵𝑖𝑡having higher value. So 

here in the fig. 14 shown the curves for increasing order of 𝐵𝑖𝑡 having the heat transfer rate is 

more at any 𝑅1except below the value𝑅1 = 0.5. Maximum value of the heat transfer rate has 

been pointed out by drawing a locus through the pick points of the curve. So a tip loss on the 

optimization has great influence as the value of the 𝐵𝑖𝑡 increasing towards upward direction 

gives a flatting curve. The maximum heat transfer rate remain almost same for higher value 

of 𝐵𝑖𝑡 as the curve shown for𝐵𝑖𝑡 = 0.008. So the condition helps to choose a  
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Fig. 14 Enhancement of maximum heat transfer rate with tip heat loss parameter  
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Chapter-6 
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6.      Conclusion                     

An analytical methodology for the thermal analysis of the annular disk fin (ADF) with 

constant thickness has been developed. The approach adopted here for the thermal analysis is 

a generalized one. It is assumed a case of variable internal heat generation witha constant 

base temperature. Using the Frobenius expanding series, the generalized governing 

differential equation has been solved. The fin temperature distribution has been evaluated 

analytically.    The thermal performance has been studied over radius ratio, Biot number, 

internal heat generation parameters. The internal heat generation has shown greater influence 

on the fin performance. For a particular Biot no. performances has maximum value for a 

convected tip fin, instead an insulated one. The present analysis has demonstrated an 

optimum design condition for the maximum efficiency of a fin subject to internal heat 

generation, both fin efficiency and fin effectiveness have been increased substantially which 

may be favourable condition in a practical design. So the interesting observation on 

convected tip ADF has been studied further for optimization.  

Later on the results of ADF’s dimension has been optimized for maximum heat transfer rate. 

These study on optimization has been carried out using elimination of Euler lagrangian 

multiplier. Optimum results has been obtained for various thermo-geometric parameters. 

These are fin volume, Biot no., heat generation, tip condition, heat generation parameter, etc. 

In practical case, the value provided on the study of optimization of ADF, is very useful for 

design on the basis of internal heat generation. 
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