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Abstract 

In the present work, an electroosmotic flow of a Newtonian liquid within a microchannel 

between two parallel plates has been studied analytically. Electroosmotic flow is an 

important area of research because of its widespread applications in biomedical and 

chemical industries. The present study has been divided into three sections. Firstly, an 

electroosmotic flow between two parallel plates with no-slip boundary conditions is 

considered. The Debye-Huckel linear approximation is ignored to minimize error in 

results. The electrical potential distribution is represented by the non-linear Poisson-

Boltzmann equation which is solved adopting homotopy perturbation method (HPM) 

without the Debye-Huckel approximation to obtain electrical potential field. 

Subsequently, the Navier-Stokes equation has been modified and solved analytically 

using the potential field to determine the velocity distribution. The energy equation has 

also been modified using scale analysis and solved analytically incorporating the velocity 

profile obtained to get the temperature profile. Finally, an expression of Nusselt number 

is determined based on the velocity and temperature profiles. The proposed results 

(without the Debye-Huckel approximation) are presented in a comparative way with the 

FDM and an existing conventional method with the Debye-Huckel approximation to 

compare the accuracy level of the proposed method. It is observed that the proposed 

results show good agreement with the numerical results for a wide range of wall zeta 

potential whereas the exiting conventional method shows deviation from the numerical 

results for higher value of zeta potential. Finally, Nusselt number is predicted with the 

electrokinetic length for different values zeta potential. It is observed that the present 

analysis may be used for prediction of electroosmotic flow within microchannels for a 

wide range of wall zeta potential.  

In the second section, an analytical solution is presented for a combined pressure 

driven electroosmotic flow of a Newtonian liquid within a microchannel between two 

parallel plates. The electroosmotic flow is considered to be induced by an externally 

applied electrostatic potential field and a pressure gradient. The no-slip boundary 

conditions are considered. The reduced form of the Navier-Stokes and the energy 

equations are considered, respectively to determine velocity and temperature 

distributions. The electrical potential distribution is determined using HPM without the 

Debye-Huckel linear approximation. The Navier-Stokes and the energy equations 
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subjected to respective boundary conditions are solved analytically. The results obtained 

are validated with existing literature and show good agreement. An expression of RefC  

product is obtained from the velocity field. The zeta potential is varied for a particular 

electrokinetic length and proposed results are presented graphically. Finally, the Nusselt 

number is presented with electrokinetic length for different values of zeta potential. The 

results demonstrate the influence of the zeta potential on the electrical potential, velocity, 

temperature distributions, RefC  product and Nusselt number.  

In the third section, an analytical investigation has been conducted on a combined 

pressure driven electroosmotic flow of a Newtonian liquid within a microchannel 

between two parallel plates. The flow is considered with first order slip boundary 

conditions. The non-linear Poisson-Boltzmann equation without the Debye-Huckel linear 

approximation is used to determine the electric potential distribution. The reduced form 

of the Navier-Stokes equation with slip boundary conditions is considered to determine 

velocity field and skin friction coefficient, whereas the energy equation is simplified to 

obtain temperature distribution, Nusselt number and entropy generation rates. The 

homotopy perturbation method (HPM) is adopted as an analytical tool to solve the 

Poisson-Boltzmann equation while, the Navier-Stokes and energy equations are solved 

analytically to obtain the velocity and temperature distributions. The results obtained are 

validated with existing literature and show good agreement. Proposed results for 

potential, velocity and temperature fields are presented graphically varying wall zeta 

potential, slip coefficient and pressure gradient. Subsequently, a parametric study is 

carried out for the skin friction coefficient and the Nusselt number. Finally, an effort is 

made to determine local volumetric entropy generation rate and global entropy generation 

rate. The results demonstrate the effect of pressure gradient and the Brinkmann number 

on the entropy generation rates.          
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Nomenclature 

Symbol Description 

H2  Distance

 

between two parallel plates in Chapter 1 and 2 (m)

 
H  Distance

 

between two parallel plates in Chapter 3 (m)

   Perpendicular distance of a given point from the centre (m)

 
0n  Bulk ionic concentration (m

-3
)

 
z  Valence of ions 

e  Electric charge (C) 

bk  Boltzmann constant (JK
-1

) 

T  Absolute temperature (K) 

  Non-dimensional zeta potential 

u  Velocity in x-direction (ms
-1

) 

mu  Mean velocity (ms
-1

) 

U

 

Non-dimensional velocity

 
xF  Electrical force per unit volume of the liquid (Nm

-3
) 

xE  Electric field strength (Vm
-1

) 

E

 

Non-dimensional electric field strength 

L  Distance between the two electrodes (m) 

1C , P  Non-dimensional pressure gradient 

2C  Ratio of the electrical force to the frictional force per unit volume

  


 

Slip coefficient

 
wq  Heat flux at wall (Wm

-2
)

 

fC  Skin friction coefficient

 

pc  Specific heat (Jkg
-1

K
-1

)

 

wT  Wall temperature (K)

 

mT  Mean temperature (K)

 
Nu  Nusselt number 

GS  
Local volumetric entropy generation rate (JK

-1
s

-1
) 
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totalS  
Non-dimensional global entropy generation rate 

Greek symbols 

  Electric potential due to EDL (V) 

  Non-dimensional electric potential  

  Dielectric constant of the electrolyte solution (Cm
-1

V
-1

) 

  Zeta potential at the wall (V)

 
  Inverse Debye-Huckle length (m

-1
) 

  electrokinetic length (m) 

  dynamic viscosity (Pa s) 

  Slip coefficient (m) 

f  Local net charge density (Cm
-3

) 

w  Shear stress at wall (MPa)

 
  Density (kgm

-1
)

   Non-dimensional temperature 

  Non-dimensional temperature at wall 

Subscripts 

m  Mean

 x  Along x-direction

 w  At the wall

 
H  Entropy generation rate due to heat diffusion

 
J  Entropy generation rate due to Joule heating

 
V  Entropy generation rate due to viscous dissipation
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1. Introduction 

In recent days, the study on microfluidic systems has become an important area of 

research for various potential applications in biomedical and chemical industries. 

Biomedical micro-electro-mechanical systems (bioMEMS) or lab-on-a-chip devices can 

perform sample injection, chemical reaction, separation, and detection in a single 

integrated microfluidic circuit [1, 2]. The important microfluidic operations in various 

bioMEMS are pumping, mixing, thermal cycling, dispensing and separating. Various 

techniques such as thermopneumatic, magnetohydrodynamic, piezoelectric, electrostatic, 

and electroosmotic pumping have been proposed for fluid delivery [3-6]. Among them, 

electroosmotic pumping is favoured for fluid delivery through micro-devices because of 

the absence of moving parts and pulsating flows, ease of microfabrication, valve-less 

switching and great degree of flow control. Electroosmotic pumping is based on 

electroosmotic flow (EOF) within microchannels. It is important to understand the 

fundamental characteristics of EOF within microchannels for optimal design of 

electroosmotic pumps. When an electrolytic solution is under no flow condition, the ions 

dissociate. Those ions having charge opposite to that of the surface are attracted by the 

surface while, the ions having similar charge stay away from the surface. Thus, two layers 

of positively and negatively charged ions are formed near the surface which are called 

electric double layer (EDL) [5-10]. If a pressure gradient or an electric field or both are 

applied tangentially along such a charged surface, the ions in the diffuse layer will start 

moving under the action of a body force exerted by the pressure field or electric field, 

resulting in a simple EOF or a combined pressure driven EOF [16, 22-26]. The nature of 

EOF depends on the interactions between the fluid and the surface properties of the solid 

wall. Therefore, for an efficient control of the electroosmotic pumping, a detailed and 

systematic knowledge on the liquid flow behaviour is essential.  

2. Literature survey 

In this section, existing literatures based on EOF are studied. Firstly, the papers based on 

development of EOF are studied. Next, literatures presenting solution methods have been 

studied. Finally, studies on pressure driven EOF with slip boundary conditions are 

considered. 

 Burgreen and Nakache [12] studied the effect of the surface potential on liquid 
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transport through ultrafine capillary slits under an imposed electrical field. Debye-

Huckel linear approximation was followed for finding the electrical potential 

distribution.  

 Jooybari and Chen [13] derived analytical solutions for electrical potential 

distribution within an interstitial EDL in various particle geometries. An exact 

analytical solution of the Poisson-Boltzmann equation was obtained for slab-shaped 

particles containing an electrolyte solution.  

 Masood Khan et al. [14] discussed the dynamics of an EOF in cylindrical domain. 

The linearized Poisson–Boltzmann equation and the Cauchy momentum equation 

were solved using the temporal Fourier and finite Hankel transforms.  

 Yang and Li [16] used a finite difference scheme to study the electrokinetic effects 

of pressure-driven flow in rectangular microchannels. In his study, Yang used the 

Green’s function method to analytically solve the dynamic electroosmotic flow 

field.  

 Min et al. [18] analytically solved the fundamental characteristics of electroosmotic 

flow through rectangular pumping channels without the Debye-Huckel 

approximation. The Poisson–Boltzmann equation for the electric potential 

distribution and the momentum equation for the velocity profile are solved by 

averaging method.  

 Tunc and Bayazitoglu [19] analyzed the convection heat transfer for a 

hydrodynamically and thermally fully developed slip flow in a rectangular 

microchannel. The velocity and temperature profiles were determined by integral 

transform technique and the values of Nusselt number were presented for different 

aspect ratios.  

 Mala et al. [20] studied the effects of the EDL field and channel size on the velocity 

distribution, streaming potential, apparent viscosity, temperature distribution and 

heat transfer coefficient for a flow through a microchannel between two parallel 

plates at constant and equal temperatures.  

 Jain and Jensen [21] presented an analytical investigation on the effects of 

electrostatic potential in microchannels. The energy equation was solved with the 

Nusselt number for constant wall heat flux and constant wall temperature boundary 

conditions and they were presented with analytic expressions over a wide range of 

operating conditions.  
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 Ngoma and Erchiqui [22] presented a study on incompressible liquid exhibiting 

hydrodynamically and thermally steady fully developed laminar flow with the slip 

boundary condition through a microchannel between two parallel plates with 

imposed heat flux. They considered the combined effect of pressure-driven flow 

and electro-osmosis. The Poisson–Boltzmann, the modified Navier–Stokes and the 

energy equations were solved to obtain the electric potential, flow, and thermal 

characteristics.  

 Shamshiri et al. [24] performed the first and second law analysis for a combined 

pressure-driven and electroosmotic flow of non-Newtonian liquid through a 

uniform microannulus. The governing equations are solved numerically in 

cylindrical polar coordinates using finite difference method. In the second law 

analysis, the entropy generation rates were determined and the influence of thermal 

diffusion, Joule heating and viscous dissipation are examined on the total entropy 

generation.  

 Wang and Jian [25] investigated the thermal transport properties of fluid through 

slit soft nanochannels under the combined influences of pressure-driven and 

streaming potential. The non-dimensional temperature distribution was analytically 

determined from the energy equation based on the electric potential and velocity 

distributions. Finally, the entropy generation rates are obtained and presented 

graphically.  

 Jing et al. [26] developed closed form expressions of Joule heating, viscous 

dissipation and Nusselt number for steady, laminar, hydrodynamically and 

thermally fully developed pressure driven EOF with charge-dependent slip in a 

microchannel. The effects of zeta potential on the Joule heating, viscous dissipation 

and Nusselt number were analyzed. 

3. Summary of literature survey 

In the existing literature, the following observations were made 

 The analytical solution describing the electrical potential distribution is obtained 

from the assumption that the electric potential approaches zero at the center of the 

channel. 

 If the channel width is extremely small and comparable to the EDL thickness, the 
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electrical potential at the center approaches a non-zero value and the assumption in 

the existing studies may be invalid.  

 The electrical potential distribution within a microchannel is determined by a 

simplified analysis based on the Debye-Huckel linear approximation which is valid 

only when the wall zeta potential is very small (usually <25 mV) [18].  

 Higher values of zeta potential (100–200mV) are frequently encountered in 

practical applications [18]. As a result, the accuracy level of the result is reduced. 

For such instances, in place of the Debye-Huckel approximation tedious and time-

consuming numerical simulations are used.  

 The existing analytical methods applied are complex, lengthy and laborious.  

Hence, it is highly desirable to use a simple analytical method to predict the 

fundamental characteristics of EOF within microchannels without the Debye-Huckel 

approximation. 

4. Work plan 

In the present work, homotopy perturbation method (HPM) is considered as an analytical 

tool to solve the Poisson-Boltzmann equation as it is a simple and powerful solving 

technique. Subsequently, the electric potential distribution obtained is used to analytically 

solve the Navier-Stokes and the energy equations for determination of velocity and 

temperature distributions, respectively, for an EOF within a microchannel between two 

parallel plates.  

The present study on EOF is categorized into three sections as follows 

 EOF within a microchannel between two parallel plates with no-slip boundary 

conditions. 

 Combined pressure driven EOF within a microchannel between two parallel plates 

with no-slip boundary conditions. 

 Combined pressure driven EOF within a microchannel between two parallel plates 

with first order slip boundary conditions. 
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CHAPTER 1 

In this segment, an EOF within a microchannel between two parallel plates with no-slip 

boundary conditions is considered. The HPM is adopted to solve the non-linear Poisson-

Boltzmann equation without the Debye-Huckel linear approximation to get the electrical 

potential distribution. The result obtained is used to analytically solve the Navier-Stokes 

equation and the energy equation for determination of velocity and temperature 

distributions, respectively. The results obtained by the proposed method are compared 

with an existing conventional method based on the Debye-Huckel approximation and a 

numerical method. Finally, Nusselt number is presented as a function of electrokinetic 

length for different values zeta potential.  

5. Description of physical problem 

The present study considers a microchannel consisting of two parallel plates separated by 

a distance 2H as shown in Fig. 1. The plates extend to infinity in the x and z-directions. 

Due to the symmetry in the potential and velocity fields, the solution domain is reduced to 

a half section of the channel (the hatched area). Two plate type electrodes are placed apart 

by length L normal to the parallel plates such that an electric field is induced in the x-

direction. 

 
Fig. l: Schematic of the parallel plate microchannel 

The following assumptions are considered in the present analysis 

 The liquid is an incompressible, Newtonian and symmetric electrolyte.  

 The thermophysical properties are constant. 

 The flow is steady, laminar, hydrodynamically and thermally fully developed. 

 No-slip boundary conditions and no wall temperature jump are considered. 
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6. Mathematical formulation 

In the present study, an electroosmotic flow through a microchannel between two parallel 

plates is considered. The constitutive governing equations are written as  

6.1 Poisson-Boltzmann equation 

The one dimensional EDL field can be described by the Poisson-Boltzmann equation as 

[15, 17, 18] 

)/sinh()/2(/ 0

22 Tkzezeny b 

            

(1) 

The boundary conditions are stated as  

 at 0y , 0/  y  and at ,Hy     

6.2 Momentum equation 

The Navier-Stokes equation along the x-axis is considered by a balance between the shear 

stresses in the fluid and externally imposed electric field force as [15, 17, 18] 

0)/( 22  xFyu
                   

(2) 

where, xfx EF 
  
            

Therefore, the Eq. (2) can be written as 

 0)/( 22  xf Eyu 

     

           (3) 

The boundary conditions are  

at 0y , 0/  yu  and at Hy  , 0u

 

6.3 Energy equation 

The energy equation for a steady fully developed laminar liquid flow is given as [15, 17, 

18] 

)/()/( 22 yTxTu                  (4)

 
where,  /pC  

The boundary conditions are given as  

at 0y , 0/  yT  and at Hy  , wTT 
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7. Solution method 

As stated before, one of the objectives of the present work is to provide a simple, less 

laborious analytical solution apart from the analysis of EOF between two parallel plates.  

The homotopy perturbation method (HPM) is adopted in the present analysis. Thus, the 

Poisson-Boltzmann equation is solved using HPM and the constitutive governing 

equations for velocity and temperature distributions have been solved analytically using 

the potential distribution obtained by HPM. 

7.1 Electric potential distribution 

The Eq. (1) and its boundary conditions are non-dimensionalized by introducing the 

dimensionless variables such as 

Hy / , )/( Tkze b , )/(2 Tkze b  

The non-dimensional form of Eq. (1) becomes  

 sinh/ 222 
                 

(5) 

where 𝜆 = κH and
 

)]/(2[ 0

22 Tknez b   

The corresponding non-dimensional boundary conditions are 

 at 0 , 0/  and at 1 ,   

It is already stated that most of the existing works on EOF considered the Debye-

Huckel approximation where sinh  in Eq. (5) has been taken as  . As a result, 

accuracy level of results may reduce. Again, for higher wall zeta potential, the deviation 

in result is more. Hence, in the present work, the Debye-Huckel approximation is ignored 

and sinh is expanded based on the Taylor series of expansion as 

 !3/sinh 3

               (6)

 Substituting the above relation in Eq. (5) yields 

)!3/(/ 3222  Y                  (7) 

The Eq. (7) is solved by constructing a homotopy as 

  0]3/[ 22222    p

                

(8) 

where, 22 /   ,   is a modified inverse Debye length and ]1,0[p  is an 

embedding parameter.  

The power series in p used to find the solution of Eq. (8) is  

 2

2

10 pp
                 

(9) 
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Substituting the above expression in Eq. (8) and arranging the coefficients of p powers, 

one can obtain 

    0]!3/[ 3

0

2

0

22

1

2

1

1

0

2

0

0   pp
             

(10) 

Equating the coefficients of p
0
, p

1
 to zero gives 

:0p
 

00

2

0                             (11) 

:1p
 

  0!3/3

0

2

0

22

1

2

1              (12) 

The Eq. (11) is solved using the boundary conditions 

   10 ,   000     

resulting in  

)cosh(/)cosh(0                           
            

(13)
 

Substituting the above expression in Eq. (12) and simplifying the equation gives
 

 

  0)](cosh24/[]3cosh

cosh3[)cosh(/)cosh()(

3

3222

1

2

1



 




        (14) 

In order to eliminate cosh(Y) from Eq. (14) the coefficients are collected and equated to 

zero as 

0)](cosh8/[)cosh(/)( 33222    

to give the value of ω as 
 

16/]643212864)88[( 22242            (15)
 

Eliminating )cosh(   the Eq. (14) becomes
  

0)](cosh24/[)3cosh( 332

1

2

1                       (16)
 

Now applying the boundary conditions 

  011  ,   001 
 

the Eq. (16) is solved as 

)]cosh(/)cosh()3cosh()3)][cosh((cosh192/[ 3232

1          (17)
 

Substituting the results of Eq. (13) and Eq. (17) in Eq. (9) and considering 1p , the 

electrical potential distribution is obtained as 

     3coshcosh 21             (18)
 

where,   )](cosh192/[3cosh)cosh(/ 4232

1    and )](cosh192/[ 3232

2    
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7.2 Velocity distribution 

The electrical potential distribution obtained in Eq. (18) is used to determine velocity 

profile. The Eq. (3) can be rewritten as  

2222 /)/( yEyu x  
                   

(19) 

where 
22 / yf  

 

The Eq. (19) is non-dimensionalized incorporating the following non-dimensional terms 

muuU / , /LEE x , )/(2 0

2

0 LuHzenM 

 
Hence, the non-dimensional velocity field is written as 

)/)(/(/ 22222  MEU
     

      (20) 

The corresponding non-dimensional boundary conditions become, 

  at 0 , 0/ U and at 1 , 0U  

Integrating Eq. (20) twice with respect to   with the given boundary conditions, the 

velocity profile is obtained as
 
    ]1/}3coshcosh)[{/( 21

2  ZMEZU 
                                 

(21)
 

The expression of (MEZ/λ
2
) is determined from the definition of mean velocity as 

1

1

0

UdY

                

(22) 

and obtained as 

    ]1/)}3/(3sinh)/(sinh/[{1)/( 21

2  ZMEZ           (23) 

Finally, the velocity field is represented as 

   
    ]1/)}3/(3sinh)/(sinh[{

]1/}3coshcosh[{

21

21






Z

Z
U




                  (24) 

7.3 Temperature distribution 

In this section an effort is made to determine temperature profile using the velocity profile 

obtained. Hence, the Eq. (4) for temperature field is simplified by performing scale 

analysis as 

TucATcmq mppw  ~)/(~ 
 
and  wmw TThq  ~

 
From the above relations it is observed that

 

)/(// HcuqxTxT pmw  

           

(25) 
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Combining Eq. (4) and Eq. (25) the relation obtained is as follows 

)/(/ 22 HcuquyT pmw  

             

(26) 

The Eq. (26) is non-dimensionalized considering 

)/()( wmw TTTT   and KhHNu /))(4(  

and is rewritten as 

4/))((/ 22 UNu              (27) 

The corresponding boundary conditions become  

at 0 , 0/   and at 1 , 0  

Substituting Eq. (24) in Eq. (27) gives 

    ]1/}3coshcosh)[{4/(/ 21

222  ZNuMEZ 

        

(28) 

The Eq. (28) is integrated twice with respect to   with the given boundary conditions to 

obtain temperature profile as 

   

    ]2/)1()9/(}]3cosh3{cosh

}cosh{cosh9)[[4/(

22

2

1

2

YZ

NuMEZ








          (29) 

Finally, to determine Nusselt number, the mean temperature is expressed as 

 

1

0

1dYU

               

(30) 

The expression for Nusselt number is obtained at the solid wall as 

   

]3/1)/()}27/()3sinh(

)9/()3{cosh(A2)/()}/()sinh()/(){cosh(A2

)9/()}12/()6sinh(2/1{A)9/()}12/()4sinh(5

)6/()2sinh(5{AA)/()}4/()2sinh(2/1{[A

]1)3/(}3sinhsinh3[{4

3

2

2

32

1

222

2

22

21

222

1

2

21












Z

Z

ZZ

Z

Z
Nu











             

(31) 
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8. Result and discussion 

Finally, a Matlab program is developed to predict electrical potential, velocity and 

temperature distributions. The proposed method (without the Debye-Huckel 

approximation) is presented in a comparative way with a numerical method (FDM) and 

the existing conventional method [17] based on the Debye-Huckel approximation to 

compare the accuracy level of the proposed method. 

(a)  

(b)  

Fig. 2: Potential distribution for 10  at (a) 1  and (b) 3  

In the Fig. 2(a, b), the electrical potential obtained by the proposed HPM (without the 

Debye-Huckel approximation), the conventional method (with the Debye-Huckel 

approximation) [17] and the FDM are plotted in a comparative way to clearly show the 

limit of the Debye-Huckel approximation at 1  and 3  respectively. The electrokinetic 

length ( ) is kept constant at 10 to observe the effect of wall zeta potential on the 



   

Page | 24  

 

potential distribution. It is observed that the analytical results obtained by the HPM are in 

close agreement with the FDM for both the values of  . As shown in Fig. 2a, the solution 

based on the conventional method [17] matches well with the numerical solution for 

smaller value of zeta potential ( 1 ). But, for higher value of zeta potential ( 3 ), the 

conventional method [17] deviates from the numerical results. Therefore, the proposed 

HPM method without the Debye-Huckel approximation can predict more accurate results 

for a wide range of wall zeta potential.   

Fig. 3(a, b) represent velocity distributions based on the proposed HPM, the 

conventional method [17] and FDM for 10  at 1  and 3 , respectively. It is clear 

from both the figures that the proposed HPM method matches well with the numerical 

method for both the values of wall zeta potential whereas the conventional method [17] 

deviates for higher value of   ( 3 ).  

(a)  

(b)  

Fig. 3: Velocity distribution for 10  at (a) 1  and (b) 3   
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The Fig. 4(a, b) represent the temperature distribution for an electrokinetic length of 10 

and zeta potential values of 1 and 3. Here the solutions based on the proposed results are 

compared with the conventional [21] and numerical results. It is observed that the 

proposed result is in close agreement with the numerical result for both the values of zeta 

potential whereas, the conventional results [21] show a little deviation from the numerical 

results close to the plate surface for higher value of zeta potential ( 3 ). 

(a)  

(b)  

Fig. 4: Temperature distribution for 10  at (a) 1 , (b) 3  

In this section an effort is made to predict the Nusselt number with electrokinetic 

length for different values of   ( 1 , 2  and 3 ) in the Fig. 5. It is observed that for a 

particular value of  , Nusselt number decreases steeply with increase in  . The increase 

in   increases the EDL thickness, as a result the resistance to convection heat transfer 

increases. Thus, Nusselt number decreases as   increases. It is also noticed that for a 

particular value of  , the Nusselt number increases with increase in  . The increase in 

the value of Nusselt number with   can be attributed to the fact that on increasing the 
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value of   the presence of EDL can be felt in a region at a greater distance from the wall 

which lowers the resistance to convection heat transfer, and hence, causes an increase in 

the value of Nusselt number. 

 

Fig. 5: Variation of Nu  with   for different value of Z  
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CHAPTER 2 

In this section, an analytical study is conducted on a combined pressure driven EOF 

within a microchannel between two parallel plates. No-slip boundary conditions are 

considered and the Debye-Huckel linear approximation is ignored. The HPM is 

considered as an analytical tool to solve the Poisson-Boltzmann equation and determine 

the electrical potential distribution. While, the reduced forms of the Navier-Stokes and the 

energy equations are solved analytically for determination of velocity and temperature 

distributions, respectively. 

9. Description of the physical problem 

In this section, a microchannel consisting of two parallel plates separated by a distance 

2H is considered as shown in Fig. 6. The property variations in the y-direction are 

considered. Half section of the channel (as shown by the hatched area in Fig. 6) is used 

for analysis. An electric field is induced in the x-direction by two plate type electrodes 

placed apart by length L normal to the parallel plates. A constant pressure gradient is also 

imposed in the x-direction to study the combined effect of both the fields.  

 

Fig. 6: Schematic of pressure driven EOF through parallel plate microchannel 

The following assumptions are made for the mathematical formulation 

 The liquid is an incompressible, Newtonian and symmetric electrolyte.  

 The thermophysical properties are constant. 
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 The flow is steady, laminar, hydrodynamically and thermally fully developed. 

 No-slip boundary conditions and no wall temperature jump are considered. 

10. Mathematical formulation 

In the present study, a combined pressure driven electroosmotic flow through a 

microchannel between two parallel plates is considered. The subsequent governing 

equations subjected to the respective boundary conditions are considered. 

10.1 Poisson-Boltzmann equation 

The one dimensional EDL field is described by the Poisson-Boltzmann equation given by 

the Eq. (1) [15-22] subjected to the following boundary conditions 

at 0y , 0/  y  and at Hy  ,     

10.2 Momentum equation 

The Navier-Stokes equation [16, 21, 22] along the x-axis is considered by a balance 

between the shear stresses in the fluid, externally imposed constant pressure gradient and 

electric field as  

0/)/( 22  xf ExPyu                     (32)  

The above equation is subjected to the following boundary conditions  

at 0y , 0/  yu  and at Hy  , 0u  

10.3 Energy equation 

The steady-state energy equation is given by the Eq. (4) [16, 21, 22]. The corresponding 

boundary conditions are given as  

at 0y , 0/  yT  and at Hy  , wTT 
 

11. Solution of the governing equations 

The governing equations for electrical potential, velocity and temperature distributions 

have been solved analytically. 

11.1 Electric potential distribution 

The governing Eq. (1) and its boundary conditions are non-dimensionalized by 

introducing the dimensionless variables similar to that in Chapter 1 and the Debye-Huckel 
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approximation is ignored. Here, sinh  is expanded based on the Taylor series of 

expansion and Eq. (1) becomes 

)!3/(/ 3222                       (33) 

The HPM is adopted as an analytical tool to solve the Eq. (33) and the final expression for 

electrical potential distribution obtained is similar to that in Chapter 1, written as 

     3coshcosh 21                (34) 

where ]cosh192/[3coshcosh/ 4232

1    and ]cosh192/[ 3232

2    

11.2 Velocity distribution 

The Navier-Stokes equation becomes  

2222 /)/( yExP/yu x  
                        

(35) 

where )/( 22 yf    is the local net charge density.
 

The Eq. (35) is non-dimensionalized incorporating the following non-dimensional terms 

muuU / , xPuH m  /)/( 2

1  , /LEE x  and )/(2 0

2

02 LuHzen   

Hence, the non-dimensionalized equation for velocity is written as 

)/)(/(/ 222

21

22  EU                               (36) 

The corresponding non-dimensional boundary conditions become  

at 0 , 0/ U and at 1 , 0U  

Finally, the velocity profile is obtained by integrating Eq. (36) twice with respect to Y 

with the given boundary conditions as 

    ]1/}3coshcosh)[{/(2/)1( 21

2

2

2

1  ZEZU                     (37) 

The relation between 1  and 2  is determined from the definition of mean velocity as 

1
1

0

 Ud
                    (38) 

and obtained as 

    ]1/)}3/(3sinh)/(sinh/[{)3/1)(/( 211

2

2  ZEZ                 (39) 

Now, the skin friction coefficient, 
fC  is defined as [8] 

)/(2 2UC wf                        (40) 

The RefC  product is obtained as 

1|/8Re  UC f
                        (41) 
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where  /)4(Re Hum  is the Reynolds number. 

11.3 Temperature distribution 

The Eq. (4) for temperature field is reduced by performing scale analysis and the relation 

obtained is as follows 

4/))((/ 22 UNu                      (42) 

The corresponding boundary conditions become  

at 0 , 0/   and at 1 , 0  

Substituting the Eq. (37) in Eq. (42) gives 

    ]]1/}3coshcosh)[{/(2/)1()[4/(/ 21

2

2

2

1

22  ZEZNu       (43) 

Thereafter, the Eq. (43) is integrated twice with respect to   with the given boundary 

conditions to yield the temperature distribution as follows 

 

      ]]2/)1()9/(}3cosh3coshcosh9

cosh9)[{/()24/524/4/()[4/(

22

221

1

2

2

42

1









Z

EZNu

         (44) 

The mean temperature is defined as  

 
1

0

1dU                     (45) 

Finally, the expression of Nusselt number, Nu , is determined at the wall by substituting 

Eq. (37) and Eq. (44) in the Eq. (45) and solved as  

   

     

  



 

dZ

EZ

ZEZNu

]]2/)1()9/(}3cosh

3coshcosh9cosh9)[{/()24/524/

4/([]1/}3coshcosh)[{/(2/)1(/4

22

2

211

2

2

4

2

1

1

0 21

2

2

2

1







 

(46) 
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12. Results and discussion 

In the segment, a Matlab program is developed to solve the constitutive governing 

equation. The electrical potential, velocity, temperature fields, skin friction coefficient 

and Nusselt number are determined. The results obtained are presented in a comparative 

way with the existing result of Jain and Jansen [21] and numerical method (FDM).  

In the Fig. 7(a, b), the potential distributions in the Y direction for an electrokinetic 

length of 10 are presented at zeta potential values of 1 and 3 respectively. It is observed 

that the proposed result is in close agreement with the numerical solution for both the zeta 

potential values of 1 and 3. For smaller value of zeta potential (i.e., Z = 1), the solution 

based on the Debye-Huckel approximation agrees well with the numerical solution as 

shown in Fig. 7a whereas deviates more in Fig. 7b for Z = 3. Hence, the proposed method 

can be used for a large range of zeta potential. 

(a)  

(b)  

Fig. 7: Potential distribution at (a) Z = 1 and (b) Z = 3 for 10  
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The velocity distribution obtained for the combined pressure driven electroosmotic 

flow are compared with the existing work by Jain and Jansen [21] and numerical results 

in in Fig. 8(a, b). The proposed results show close agreement with the numerical method 

for Z = 1 and 3 whereas the existing work shows a little deviation from the numerical 

method close to the plate surface for Z = 3 as shown in Fig. 8b. This deviation may be 

due to the effect of the Debye-Huckel approximation considered in the existing work. 

Hence, the proposed results can predict the velocity distribution for higher values of zeta 

potential.  

(a)  

(b)  

Fig. 8: Velocity distribution at (a) Z = 1 and (b) Z = 3 for 10  

The Fig. 9(a, b) represent the temperature distribution for an electrokinetic length of 10 

and zeta potential values of 1 and 3. Here the solution based on the proposed method is 

compared with the existing work by Jain and Jansen [21] and numerical results. It is 

observed that the proposed result is in close agreement with the numerical result for both 

the zeta potential values of 1 and 3. As a consequence of considering the Debye-Huckel 
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approximation in the existing work, it shows a little deviation from the numerical result 

close to the plate surface for Z = 3 as shown in the Fig. 9b. Hence, the proposed method 

can predict the temperature distribution for higher values of zeta potential.

 

(a)  

(b)  

Fig. 9: Temperature distribution at (a) Z = 1 and (b) Z = 3 for 10  

In the Fig. 10(a, b), the product RefC
 
and the Nu are presented, respectively, as 

functions of   for Z = 1, 2 and 3. It is seen that for a particular value of Z the value of 

RefC  decreases with increase in  . It has also been observed the for a value of   the 

RefC  product increases with rise in Z values. This can be attributed to the fact that on 

increasing the value of Z the presence of EDL is felt in a region farther away from the 

wall which enhances the viscosity, and therefore, increases the value of RefC . The 

variation of Nu with   follows the same pattern as that of RefC .  
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(a)  

(b)  

Fig. 10: Variation of (a) RefC  product and (b) Nu with   for Z = 1, 2 and 3 
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CHAPTER 3 

In this section, a combined pressure driven electroosmotic flow within a microchannel 

between two parallel plates with first order slip model is considered. The HPM is adopted 

as an analytical tool to solve the Poisson-Boltzmann equation. Subsequently, the electric 

potential distribution is utilized to analytically solve the Navier-Stokes equation and the 

energy equation for determination of the velocity and temperature distributions, 

respectively. Finally the skin friction coefficient, Nusselt number and the entropy 

generation rates are determined from the obtained velocity and temperature distributions. 

13. Description of physical problem 

In the present work, a microchannel between two parallel plates separated by a distance H 

is considered as shown in Fig. 11. The plate extends to infinity in x and z directions. 

Therefore, property variations are considered in the y-direction. Two plate type electrodes 

are placed apart by length L  normal to the parallel plates such that an electric field ( xE ) 

is induced in the x-direction. A constant pressure gradient xP  /  is also imposed in the 

x-direction to study combined effect of both the fields. 

 
Fig. 11: A combined pressure driven electroosmotic flow between two parallel plates 

The following assumptions are made in the present analysis 

 The liquid is an incompressible, Newtonian and symmetric electrolyte. 
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 The thermophysical properties are constant. 

 The flow is steady, laminar, hydrodynamically and thermally fully developed. 

 First order slip velocity boundary conditions and no temperature jump are 

considered. 

14. Mathematical formulation 

In the present study, a combined pressure-driven electroosmotic flow through a 

microchannel between two parallel plates is considered. The constitutive governing 

equations subjected to the respective boundary conditions are considered as follows. 

14.1 Poisson-Boltzmann equation 

The one dimensional EDL field can be described by the Poisson-Boltzmann equation as 

[15-22] 

)/sinh()/2(/ 0

22 Tkzezeny b 

          

(47) 

The Eq. (46) is subjected to the following boundary conditions 

 at 2/Hy  , 0/  y  and at ,0y  and at ,Hy     

14.2 Momentum equation 

The Navier-Stokes equation along the x-axis is considered by a balance between the shear 

stresses in the fluid, externally imposed constant pressure gradient and electric field as 

[21, 22] 

0/)/( 22  xf ExPyu 

     

      (48) 

The above equation is subjected to the following boundary conditions  

at 0y , )|/( 0 yyuu   and at Hy  , )|/( Hyyuu  

 

14.3 Energy equation 

The steady-state energy equation is given as [21, 22] 

 222 )/()/( xp EyTkxTuC 
           (49)

 
The boundary conditions are given as  

at 0y , ,)/( wqyTk 
wTT   and at ,Hy  ,)/( wqyTk  wTT   



   

Page | 37  

 

15. Solution method 

The governing equation for the electrical potential has been solved adopting HPM. 

Subsequently, the velocity and temperature distributions have been solved analytically 

based on the obtained electrical potential field. 

15.1 Electric potential distribution 

The governing Eq. (47) for electrical potential distribution has been solved by adopting 

HPM but first, it is non-dimensionalized by introducing the dimensionless variables as 

 Hy / , )/( Tkze b , )/(2 Tkze b  

The non-dimensional form of Eq. (47) becomes  

 sinh/ 222 
                   

(50) 

where H   and
 

)]/(2[ 0

22 Tknez b   

The corresponding non-dimensional boundary conditions are written as  

 at 2/1 , 0/  and at 0 , and at 1 ,   

In the existing work, the Debye-Huckel approximation linearizing sinh  with   

have been used. In the present work, the Debye-Huckel approximation is ignored for Eq. 

(50) making it nonlinear. Now, sinh is expanded based on the Taylor series of 

expansion as 

...!3/sinh 3               (51)

 Substituting the above relation in Eq. (50) results in 

...)!3/(/ 3222                      (52) 

The Eq. (52) can be solved by constructing a homotopy as 

  0]3/[ 22222   p

               

(53) 

where, 
22 /  ,   is the modified inverse Debye length and ]1,0[p .  

The power series in p used to find the solution of Eq. (53) is  

 2

2

10 pp
                

(54) 

Substituting the above expression in Eq. (53) and arranging the coefficients of p powers, 

one can obtain 

    0]!3/[ 3

0

2

0

22

1

2

1

1

0

2

0

0   pp
                 

(55) 

Equating the coefficients of p
0
, p

1
 to zero gives 
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:0p
 

00

2

0                           (56) 

:1p
 

  0!3/3

0

2

0

22

1

2

1              (57) 

The Eq. (56) is solved using the boundary conditions 

   00 ,    10  
and   02/10     

resulting in  

)2/cosh(/)}2/1(cosh{0   Y                          
          

(58)
 

Substituting the above expression in Eq. (57) and simplifying the equation gives
 

0)]2/(cosh24/[)}]2/1(3cosh{)}2/1(cosh{3[

)2/cosh(/)}5.0(cosh{)(

332

22

1

2

1



 



 Y

           (59)
 

In order to eliminate )}5.0(cos{ Y  from Eq. (59) the coefficients are collected and 

equated to zero as 

0)]2/(cosh8/[)2/cosh(/)( 33222    

to give the value of ω as follows
 

2/]2)4()88[( 2222 z                          (60)
 

The Eq. (59) becomes
  

0)]2/(cosh24/[)}2/1(3cosh{ 332

1

2

1                 (61)
 

Now applying the boundary conditions 

  001  ,   011  and 0)2/1(1   

the Eq. (61) is solved as 

)]2/cosh(/)}2/1(cosh{)2/3cosh(

)}2/1(3)][cosh{2/(cosh192/[ 3232

1








         (62) 

Substituting the results of Eq. (58) and Eq. (62) in Eq. (54) and considering p = 1, the 

electric potential distribution is obtained as 

)}2/1(3cosh{)}2/1({cosh 21            (63)
 

where )]2/(cosh192/[)2/3cosh()2/cosh(/ 4232

1   and

)]2/(cosh192/[ 3232

2    

15.2 Velocity distribution 

The Navier-Stokes equation becomes   

2222 /)/( yExP/yu x  
                        

(64) 
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where )/( 22 yf    is the local net charge density.
 

The Eq. (64) is non-dimensionalized incorporating the following non-dimensional terms 

muuU / , PxPuHC m  /)/( 2

1  , )/(2 zeuTEkC mxb   and Hum /

 
Hence, the equation for the velocity field is written as 

)/(/ 22

21

22  CCU
                       

(65) 

Integrating Eq. (65) twice with respect to Y yields 

212

2

1 2/ aaCCU                     (66) 

where 1a  and 2a  are integration constants. The corresponding non-dimensional 

boundary conditions become

 

 

at 0 , )|/( 0 UU and at 1 , )|/( 1 UU  

Applying the above boundary conditions two linear equations are obtained as follows 

3221 )}0()0({ CCaa                  (67) 

42121 )}1()1({)2/1()1( CCCaa                  (68) 

Solving the Eq. (67) and Eq. (68) the expressions for 1a  and 2a  are determined as 

)21/()( 341  CCa              (69) 

)21/(})1{( 432  CCa             (70) 

Now, the skin friction coefficient Cf is defined as [15] 

)/(2 2UC wf                (71) 

The product RefC is obtained as 

1|/4Re  UC f                    (72) 

where  /)2(Re Hum
 
is the Reynolds number. 

15.3 Temperature distribution 

The thermally fully developed condition of Eq. (49) for an imposed constant heat flux 

boundary condition gives  

 xTxT m //  constant  

where  

1

0

UTdTm
              (73) 

The energy balance for a liquid flowing through a microchannel can be expressed as 
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 2/2/ xwmmp EHqxTuC             (74) 

Substituting Eq. (74) in Eq. (49) yields 

 2222 )/(/)/2( xmxw EyTkuEHqu               (75) 

The Eq. (75) is non-dimensionalized using the following non-dimensional terms 

),//()( kHqTT wm ,/2 2

1 xw EHqH  wxv qHEq /2 and 

)//()( kHqTT wmww   

Hence, the non-dimensionalized energy equation becomes 

vqUH  1                          (76) 

The non-dimensional boundary conditions are 

at 0 , ,1/  w  and at 1 , ,1/  w  

Integrating Eq. (76) twice with respect to Y subjected to the above boundary conditions 

yields 

2/)(2/)(

6/)()]2/1(3cosh9/)}2/3{cosh(

/)}2/1(cosh)2/{cosh([24/)(

2

1

2

21

3

11

2

2

2

121

4

11







v

w

qHaH

aH

CHCH





      (77) 

The fully developed Nusselt number at the top and bottom plates is expressed as [22] 

)/(1)}(/{ mwmww TTkHqNu            (78) 

where  

 

1

0

)( dU wmw              (79) 

15.4 Entropy generation rate 

In this section an effort is made to determine entropy generation rate. The local 

volumetric entropy generation rate is described as [24-26] 

GVGJGHG SSSS               (80) 

where ,GHS
 GJS  and GVS  are the local volumetric entropy generation rates due to heat 

diffusion, Joule heating and viscous dissipation, respectively, as described below 

22 /)/( TyTkSGH               (81) 

TES xGJ /2               (82) 
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TyUSGV /)/( 2               (83) 

GS is non-dimensionalized by introducing the following non-dimensional terms  

22 )/()/( HS                         (84) 

)/(  vJ qS               (85) 

)/()/( 2  UBrSV             (86) 

where 

)/( ww HqkT  and )/(2

wm Hqur  is the Brinkmann number. 

The non-dimensional global entropy generation rate is expressed as [24-26] 

 

2/1

0

)( dSSSS VJHtotal              (87) 
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16. Result and discussion 

In the present study, a combined pressure driven electroosmotic flow between two 

parallel plates with first order slip boundary conditions is considered. The electrical 

potential, velocity, temperature fields, skin friction coefficient, Nusselt number and the 

entropy generation rates are determined. Finally, a Matlab program is developed to solve 

the constitutive governing equations. Different parametric studies are conducted on the 

results obtained. 

16.1 Effect of wall zeta potential on the potential distribution 

In the Fig. 12, the non-dimensional potential distribution ( ) in the direction normal to 

the parallel plates ( - direction) is presented for 1 , 2  and 4  considering an 

electrokinetic length ( ) of 10. It is observed that   value increases from the centre of 

the microchannel and attains maximum value at the walls. Moreover, the value of   

increases with increase in  . 

 

Fig. 12: Potential distribution for different values of zeta potential ( 10 ) 

16.2 Effect of slip coefficient and pressure gradient on the velocity 

distribution 

In Fig. 13, the non-dimensional velocity distribution (U ) is presented with   at 0 ,

05.0  and 1.0
 

for 10 , 1  and 9.1P . The velocity profile for 0
 

corresponds to the familiar velocity profile with no slip boundary condition whereas the 
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velocity profiles for 05.0 and 0.1 clearly depict that the increase in   leads to higher 

values of U .  

 

Fig. 13: Velocity distribution for different values of slip coefficient ( 10 , 1 ,

9.1P ) 

The Fig. 14 shows the variation of with U  for 9.0P , 9.1  and 8.2  considering 

05.0 .
 
It is observed that U  increases with increase in P . The rate of increase of U  

is more as the P  value increases.  

 

Fig. 14: Velocity distribution for different values of pressure gradient ( 10 ,

1 , 05.0 ) 

16.3 Effect of wall zeta potential on the RefC  product 

In the Fig. 15, the RefC  product is presented as a function of   for 1 , 2  and 3 . It 

is seen that for a particular value of Z, the value of RefC  decreases with increase in  . 

With increase in  , EDL field increases resulting an increase of fC . At the same time 
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viscosity increases resulting an decrease in Re . But, the rate of decrease of Re  is much 

faster than the rate of increase of fC . As a result, RefC  product decreases with increase 

in  . It has also been observed that for a particular value of  , the RefC  product 

increases with rise in  . This can be attributed to the fact that on increasing the value of 

 , the presence of EDL is felt in a region farther away from the wall which enhances the 

viscosity, and therefore, increases the value of RefC . 

 

Fig. 15: Variation of RefC  product with   for 1 , 2  and 3  

16.4 Effect of slip coefficient and pressure gradient on the temperature 

distribution 

The Fig. 16 represents the non-dimensional temperature distribution at various values of 

  ( 0 , 05.0 , 1.0 ) for 10 , 1  and 9.1P . It is observed that the difference 

between wall and local temperatures attains a maximum value at the centre of the 

microchannel. With increase in   the velocity field tends to increase and thus, the 

convection heat transfer increases. As a result, the maximum value of temperature 

distribution decreases with increase in  . 
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Fig. 16: Temperature distribution for different values of slip coefficient ( 10 ,

1 , 9.1P ) 

In Fig. 17, P
 
value is varied ( 9.0 , 9.1 , 8.2 ) to study its effect on the temperature 

distribution considering 05.0 . It is evident that the maximum temperature decrease 

with increase in P .
 

 

Fig. 17: Temperature distribution for different values of pressure gradient ( 10 ,

1 , 05.0 ) 

16.5 Effect of wall zeta potential and electrokinetic length on Nusselt 

number 

In this section, the effect of various flow parameters on Nu  is studied. Fig. 18 shows the 

variation of Nu  with   for 1 , 2  and 4 considering 9.1P , 05.0 . It is seen 

that Nu  first increases, attains a peak value and then decreases. This may be explained as 

the creation of small turbulences in the flow field due to ionic distribution for smaller 
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value of  . Whereas for a larger value of  , the wall is completely surrounded by 

counter-ions which in turns reduces the disturbances in the flow causing Nu  to decrease 

with  . It is also noticed from the same figure that for a particular value of  , Nu  

increases with increase in  . The effect of the electrostatic potential near the wall 

dominates with increase in   resulting in increase in the apparent viscosity which causes 

Nu  to increase. 

  

 

Fig. 18: Variation of Nu  with   for different values of    ( 9.1P , 05.0 ) 

In the Fig. 19, Nu  is presented with B for 10 , 20 , 40  where 1  and 9.1P . 

It is observed that Nu  increases with increase in  . An increase in   increases U  

which in turn enhances the heat transfer coefficient resulting an increase in Nu . 

 

Fig. 19: Variation of Nu  with   for different values of   ( 1 , 9.1P ) 
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16.6 Effect of pressure gradient on the entropy generation 

This section deals with the effect of P  and r  on the entropy generation rates. The Fig. 

20 shows the variation of GS  with   for 9.0P , 9.1  and 8.2  considering 10 ,

1 , 05.0 , 02.0r  and 1000 . It is observed that GS  rises from the centre of 

the microchannel and attains a maximum value at the wall. It is also noticed that GS  value 

increases with increase in P  upto a certain value of   ( 42.0 ). This is due to the 

effect of electrical potential which is predominant near the wall and diminishes near the 

centre. A part of the work associated with fluid delivery and heat transfer is lost in the 

process of electroosmotic flow, whose value is proportional to that of GS . The lost work 

increases with increase in P  resulting an increase in GS . 

In the Fig. 21, totalS
 
is presented with r  for ,9.0P

 
9.1  and 8.2 . It is observed 

that totalS
 
increases with both increase in P  and r . The effect of viscous dissipation 

increases with increase in Br, resulting an increased value of totalS . Moreover, with rise in 

P ,U  increases causing totalS  to increase. 

 

Fig. 20: Variation of GS  with   for different values of pressure gradient ( 10 ,

1 , 05.0 , 02.0r  and 1000 ) 
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Fig. 21: Variation of totalS  with r  for different values of pressure gradient ( 10 ,

1 , 05.0  and 1000 ) 

16.7 Validation of the present work 

The present analytical model for the pressure driven electroosmotic flow through a 

microchannel between two parallel plates is validated with the existing work by Ngoma 

and Erchiqui [22]. The Fig. 22 represents the temperature distribution based on present 

work with the Ngoma and Erchiqui [22] as a function of Y for 10 , 1 , 9.1P  and 

05.0 . It is observed that the proposed result agrees well with the Ngoma and Erchiqui 

[22]. Therefore, the present analysis can be extended for analysis of pressure driven 

electroosmotic flow between two parallel plates. 

 
Fig. 22: Temperature distribution with  ( 10 , 1 , 9.1P  and 05.0 ) 
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17. Conclusion 

The present work proposes analytical solutions based on HPM to study the characteristics 

of a simple EOF and a combined pressure driven EOF within a parallel plate 

microchannel with both no-slip and first order slip boundary conditions. The electrical 

potential, velocity and temperature distributions are obtained by solving the Poisson-

Boltzmann equation without Debye-Huckel approximation, the Navier–Stokes equation 

and energy equation, respectively. The HPM is used to solve the nonlinear Poisson-

Boltzmann equation to determine the electrical potential distribution. The potential 

distribution obtained is subsequently used to solve the Navier Stokes and the energy 

equations to determine analytically the velocity and temperature distributions, 

respectively. fC
 
and Nu  are determined based on the velocity and temperature profiles 

respectively. Finally, entropy generation rates are determined.  

The observations in Chapter 1 are as follows 

 The non-dimensional potential distribution ( ), velocity distribution (U ) and 

temperature distribution ( ) are presented with the non-dimensional distance 

between the plates ( ) for 10  and different values of  . The results of the 

proposed method match well with that of the numerical method (FDM) while, the 

conventional method shows deviation at higher value of  . 

 The variation of Nu  with   is presented for 1 , 2  and 3 . Nu  is found to 

decrease with   whereas, its value for a particular value of   increases with 

increase in  . 

Chapter 2 shows the following observations 

  , U  and   are presented with  for 10  and 1  and 3 . The results of 

the proposed method show good agreement with that of the numerical method 

(FDM) for both the values of  , while the conventional method shows deviation at 

3 . 

 Nu  and RefC
 
product are varied with   for different values of  . Both Nu  and 

RefC
 
product are found to decrease with increase in   but increase with increase 

of   for a particular value of  . 
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Chapter 3 presents the following observations 

   is presented with   for 10  and different values of  .   is found to attain 

its maximum value at the wall which increase with increase of  . 

 The effect of   and P  on U  and w  
is studied considering 10  and 

1 . It is seen that U  increases with increase in both   and P , whereas 

w  decreases in both the cases. 

 The variation of RefC
 
product with   is analyzed for different values of    (1 , 2 ,

4 ). It is observed that RefC
 
product decreases with increase in  , while increases 

with increase in  . 

 The variations of Nu  with   and   are presented for different values of   and  , 

respectively. Nu  first increase, attains a peak value and decreases with  , while 

the peak value increases with  . It is also observed that Nu  increases with increase 

in  . 

 GS
 

is presented with   considering 10 , 1 , 05.0 , 02.0r  and 

1000 , while totalS
 
is presented as a function of r  varying the values of P  (

9.0 , 9.1 , 8.2 ). It is evident that both GS
 
and totalS

 
increase with increase in P . 

 Finally, the temperature distribution for 10 , 1 , 9.1P , 05.0  

determined by the proposed method is compared with that obtained by Ngoma and 

Erchiqui [22] and it is seen that they show perfect harmony. 

18. Future work 

In the present work, analytical solutions have been proposed for simple EOF and 

combined pressure driven EOF within microchannel between two parallel plates with 

both no-slip and first order slip boundary conditions.  The velocity profile may be 

determined considering second order slip boundary conditions. The energy equation has 

been solved ignoring any temperature jump. Therefore, first or second order temperature 

jump may be taken into account for future work. Moreover, the present work may be 

carried out for rectangular microchannel rather than parallel plate microchannel. 
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