Ref No.: Ex/M.Sc./PHY/E/III/306/29/2017

M. Sc. 3rd year, 1st Semester (Eve) Examinations 2017 3rd year, 1st Semester (Physics, Eve)

Subject: Electronics II

Time: 2 hours

Full Marks: 40

Paper- PHY/TE/306

Answer any four questions.

- 1. a) Differentiate between skew rays and meridional rays propagating in optical fibre.
 - b) Calculate the numerical aperture of a step index optical fiber having $n_1 = 1.48$ and $n_2 = 1.46$. What is the maximum entrance angle for this fibre if the outer medium is air?
 - c) What is group velocity dispersion in an optical fibre?

3+(2+3)+2

- What do you mean by attenuation in an optical fibre? How does it limit
 # the performance of optical fibre while using in communication? Discuss the mechanisms by which attenuation is caused in optical signal propagation along fiber.
- 3. What do you mean by directional coupler? State clearly for the way power exchange from one guide to another guide. 3+7
- 4. a) Derive voltage and current equations of a transmission line.
 - b) Calculate impedance of a section of shorted transmission line.
 - c) What is VSWR? How it is measured?

4+3+3

- 5. a) Show that a hollow loss less metallic wave guide behaves as a high pass filter.
 - b) Calculate expressions of phase velocity and group velocity of guided wave propagation.
 - c) An air filled rectangular wave guide has inside dimension 2.6cm x 1.3cm. Find the cut off frequency of dominant mode. Through how many modes, a signal of frequency 13GHz can be propagated?

 4+2+4
- 6. a) What is characteristic impedance of a transmission line. Determine its value in terms of primary parameters of transmission line.
 - b) Explain the process of velocity modulation in a klystron and calculate its expression.

5+5