Master of Science Examination, 2017

(1st Year, 1st Semester) (EVENING)

Classical Mechanics I

Paper - PHY / TG / 101

Time - Two hours

Full Marks: 40

Answer any four questions

1. a) The Lagrangian of a system is given by

$$L = \frac{m^2 \dot{x}^4}{12} + m \dot{x}^2 V(x) - V^2(x)$$

Identify the system.

- b) What is the principle of 'Mechanical Similarity'? Use it to justify the Kepler's third law.
- c) Prove Virial Theorem.

3+4+3

- 2. a) Show that Poisson Bracket is invariant under canonical transformation.
 - b) Show that if A and B are two constants of motion then [A,B] is also a constant of motion.
 - c) Find the constant of motion of a two dimensional simple harmonic oscillator.

3+3+4

3. a) The Lagrangian of a system is given by

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}(\mu x^2 + \mu y^2 + 2kxy)$$

Find the eigen-frequencies and ratio of the amplitudes.

- b) Show that $(A')^T T (A') = I$ where the symbols have their usual meaning.
- c) Find the normal co-ordinates in case of (3a).

4 + 3 + 3

- 4. a) Find the moment of inertia tensor of a square plate taking axes at one corner of the plate.
 - b) Hence find the principal moments of inertia and directions of principal axes.
 - c) Show that $L_i = \frac{\partial T}{\partial W_i}$ where the symbols have their usual meaning.

4+3+3

- 5. a) Discuss the motion of a heavy symmetrical top.
 - b) Find the generating function for which the transformed Hamiltonian of an one dimensional simple harmonic oscillator after canonical transformation will be proportional to square of the generalised momentum only.

6+4