MASTER OF SCIENCE EXAMINATION, 2017

(1st Year, 1st Semester)

PHYSICS

Quantum Mechanics

Paper - PHY/TG/103

Full Marks: 40 Time: Two Hours

Answer Q. No. 1 and any three (3) questions from the rest

- 1. Answer any four $(2.5 \times 4 = 10)$
 - (a) Define basis vectors. Write down the conditions for position eigenvectors to be the continuous basis vectors.
 - (b) If $|\Psi(t)\rangle$ represents a state vector in LVS, then what do $\psi(x,t)$ and $\tilde{\psi}(p,t)$ mean physically? How are they related with each other?
 - (c) What does $\langle x|p\rangle$ mean? Find its value.
 - (d) Suppose a spin 1/2 particle is in the state $\chi = \frac{1}{\sqrt{6}} \left(\frac{2}{1+i} \right)$. What are the probabilities of getting different eigen values of S_x , S_y .
 - (e) Show that if $|\Phi_i\rangle$'s form basis of a LVS then $|\Phi_i\rangle\langle\Phi_j|$ forms the basis of any operator in that LVS.
- 2. (a) Write down the Hamiltonian of L.H.O in terms of raising and lowering operator? Find out the dimension of each term of the raising operator?
 - (b) Find out the Eigen function of lowering operator 'a' in terms of the ground state

 $(|0\rangle)$ of LHO and normalize it. (5+5)

- 3. (a) What does Clebsch-Gordan (C.G) coefficient mean? Prove the selection rule for C.G. coefficients relating the eigenvalue of J_{1z}, J_{2z}, J_z.
 - (b) Calculate from first principles the C.G coefficients for $j_1=1$ and $j_2=\frac{1}{2}$. (4+6)

4. Consider the three-dimensional infinite cubical well of side *a* and introduce a time independent perturbation

$$H' = \begin{cases} V_{0,} & \text{if } 0 < x < a/2, 0 < y < a/2 \text{ and } 0 < z < a \\ 0, & \text{otherwise} \end{cases}$$

- (a) Calculate the first order correction to the ground state of unperturbed Hamiltonian.
- (b) Show how does the perturbation H'_{\pm} remove the degeneracy of 1st excited state of unperturbed Hamiltonian. (3+7)
- 5. (a) If A be a hermitian operator that commutes with H^0 (unperturbed Hamiltonian having degenerate eigenstates) and H' (perturbation) then prove that the simultaneous eigen state of A and H^0 would be the "good" states.
 - (b)Suppose the Hamiltonian, in matrix form is

$$H = H_0 + H' = V_0 \begin{pmatrix} 1 - \epsilon & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & \epsilon & 2 \end{pmatrix}$$
, where $\epsilon \ll 1$.

- (i) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian $(\epsilon = 0)$.
- (ii) Solve for the exact eigenvalues of H directly upto second order of ϵ .
- (iii) Use degenerate perturbation theory to find the first order correction to the two initially degenerate eigenvalues. Caompare it with the exact result. (3+7)
- 6. (a) Find out the radial probability density (D_{nl}) for the hydrogen atom in IS state. Draw the graphical representation of it as a function of r. Find the value of r at which D_{nl} becomes maximum.
- (b) Show how does the relativistic correction to the kinetic energy removes the ℓ degeneracy of the energy levels of hydrogen atom. (Given $\langle \frac{1}{r} \rangle = \frac{1}{n^2 a_0}$ and $\langle \frac{1}{r^2} \rangle = \frac{1}{(1+\frac{1}{r})n^3 a_0^2}$). (Symbols have their usual meanings). (5+5)