JADAVPUR UNIVERSITY

MASTER OF SCIENCE EXAMINATION, 2017.

(1st Year, 1st Semester)

Subject: PHYSICS
Paper: ELECTRODYNAMICS - 1
PHY / TG / 105

(Ref. No. EX/M.SC./P/I/105/17/2017)

Time: Two Hours Full Marks: 40

Answer any TWO questions

- 1. (a) A conducting sphere of radius R carries a charge Q on its surface. A point charge q is placed at a distance d > R, from its centre.
 - i. Calculate the force f the charge q feels.
 - ii. Plot $\frac{f}{q^2}$ against $\frac{d}{R}$ to show that even if Q and q are of same sign, they attract each other in a region close to the surface of the sphere.
 - (b) A point charge Q is placed at a distance r from the centre of two grounded concentric metallic spheres of radii R_1 and R_2 such that $R_1 < r < R_2$. Find the charges induced on the spheres.

Marks: (10 + 4) + 6 = 20

- 2. (a) Two semi-infinite dielectric media of permitivities ϵ_1 and ϵ_2 are separated by the *xy*-plane, the former occupying the region z>0. A point charge q is placed at z=h>0. Find the potential everywhere and draw the electric field lines for $\epsilon_1>\epsilon_2$ and $\epsilon_1<\epsilon_2$ separately, with "one-line" explanations for each case.
 - (b) A solid ellipsoid of revolution with the lengths of the three semi-axes given by (a, a, c) is charged uniformly with volume charge density ρ . Find the quadrupole moment with respect to the centre of the ellipsoid.

Marks: 12 + 8 = 20

- 3. (a) Find the boundary conditions obeyed by a magnetic field \vec{B} , the vector potential \vec{A} , and the spatial derivative of \vec{A} across a surface through which flows a current of surface density \vec{K} .
 - (b) A circular ring of radius r_0 is given a charge Q uniformly distributed along its circumference. Find the magnetic scalar potential at a distance d from the centre of the loop, along the axis, if the loop is rotated about its axis with an angular velocity ω .
 - (c) Find out general expressions for the magnetic scalar potential at an arbitrary off-axis point (r, θ) for the regions $r < r_0$ and $r > r_0$ separately and show that the scalar potential is not continuous at $r = r_0$.
 - (d) Why is it not continuous at $r = r_0$?

Marks: 6 + 4 + 8 + 2 = 20