Master of Science, 1st Year, 1st Semester, Examination 2017 Classical Mechanics I (PHY/TG/101)

Time - Two hours

Full Marks: 40

Answer any four questions

- 1. (a) Show that the isotropy of space (rotational symmetry) gives rise to a conservation law. Identify the conserved physical quantity.
 - (b) Show that a second conservation law follows from the homogeneity of space (translational symmetry). Identify the conserved physical quantity.

 (5+5)
- 2. Consider a double pendulum, with masses m_1 and m_2 hanging successively by strings of lengths l_1 and l_2 .
 - (a) Find the Lagrangian and Lagrange's equations for the system.
 - (b) Find the generalised momenta.
 - (c) Hence find the Hamiltonian and Hamilton's equations for the system. ((2+2)+2+(2+2))
- 3. Two masses, m_1 and m_2 are attached to fixed walls and to each other by identical springs, each of spring constant k. The masses execute one dimensional motion on a frictionless horizontal table.
 - (a) Find the Lagrange's equations for the system.
 - (b) Find the normal modes of motion. (4+6)
- 4. Consider a coordinate-momentum transformation $(q, p) \rightarrow (Q, P)$, which preserves the Hamilton's equation in the transformed variables.
 - (a) Show how the original and transformed Hamiltonians are related in general.

- (b) Show the existence of generating functions in such transformations. Identify the different types of such generating functions that are possible.
- (c) Consider the generating function

$$F_1(q,Q) = \frac{1}{2} \sqrt{mk} \ q^2 \cot(Q).$$

How does the Hamiltonian of one-dimensional simple harmonic oscillator,

$${}^{'}\mathcal{H}(q,p) = \frac{p^2}{2m} + \frac{1}{2}kq^2 \; ,$$

transform under the canonical transformation generated by this generating function.

- (d) Solve the Hamilton's equations in transformed variables, and hence substituting properly, obtain expressions for q(t) and p(t). (1+2+3+4)
- 5. (a) The distances between any two points on a rigid body do not change with time. Clearly argue to justify the correct degrees of freedom for general motion of such a body.
 - (b) For a rigid body moving with one point fixed, define Euler angles to describe its motion. Sketch diagram to explain the angles.
 - (c) Write down the rotation matrix $R_3(\psi)$ for rotation by angle ψ about z-axis, and $R_1(\theta)$ for rotation by θ about x-axis.
 - (d) Obtain a general rotation matrix $R(\phi, \theta, \psi)$, corresponding to Euler rotations (ϕ, θ, ψ) .
 - (e) Can the resultalt of an arbitrary vector $\vec{\mathbf{A}}$ under the above rotation $R(\phi,\theta,\psi)$ be achieved by a single rotation about a suitable axis? Justify your answer, particularly keeping in mind the importance of degrees of freedom. (2+2+2+2+2)

6. Earth provides a good example of a non-inertial rotating frame. Consider a fixed inertial frame, and orthonormal triad $\{\widehat{\mathbf{x}}, \widehat{\mathbf{y}}, \widehat{\mathbf{z}}\}$. Consider a local orthonormal triad $\{\widehat{\mathbf{r}}, \widehat{\theta}, \widehat{\phi}\}$ on the surface of the Earth.

- (a) Find the transformation equations between the two triad systems.
- (b) Find the acceleration for the position vector $\ddot{\mathbf{r}}$ of an arbitrary point in the local orthonormal triad $\{\hat{\mathbf{r}}, \hat{\theta}, \hat{\phi}\}$ frame.
- (c) Find the equation of motion of a particle in the moving frame (acted upon by gravity of the Earth). Identify the various non-inertial terms. (3+3+4)