Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.3 (A1.5)

(Mathematical Modelling of Biological Systems - I)

Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
(Symbols/Notations have their usual meanings.)

Answer question no. 6 and any three from the rest.

1. (a) Characterize the bifurcation with respect to the parameter $\mu \in R$ for the system of equations

$$
\begin{gathered}
\dot{x}=y \\
\dot{y}=\mu x-x^{2}-y .
\end{gathered}
$$

(b) State conditions for the existence of a Hopf bifurcation.

Does the system $\ddot{x}+\left(x^{2}+x-\mu\right) \dot{x}+x=0, \mu \in R$ exhibit a Hopf bifurcation? Justify your answer. $8+8$
[Turn over]
2. (a) Use cobwebing method to sketch the solutions of the equation $x_{n+1}=\frac{r x_{n}^{2}}{x_{n}^{2}+A}, r>0, A>0 \quad$ with initial condition $x_{0}>0$.
(b) Suppose a predator-prey system satisfies the following equations :

$$
\begin{gathered}
\dot{x}_{n+1}=x_{n}\left(a-x_{n}-y_{n}\right), \\
\dot{y}_{n+1}=y_{n}\left(b+x_{n}\right),
\end{gathered}
$$

where x and y represent the prey and predator populations at the n-th generation, respectively and $a>0,0<b<1$.
(i) Find all fixed points of this system.
(ii) Use Jury conditions to show that the interior fixed point is locally asymptotically stable if $2<a+b<3$. $8+8$
3. (a) Find the equilibrium points of the nonlinear difference equation

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right), r>0 .
$$

[Turn over]

Find the two cycles of this equation and hence comment on its stability.
(b) Calculate the Lyapunov exponent at the equilibria of the system

$$
x_{n+1}=\frac{x_{n}+x_{n}^{2}}{2} .
$$

4. (a) Consider the nonlinear autonomous system $\dot{x}=f(x), \quad x \in R^{n}$ with an isolated equilibrium point \bar{x}. Define Lyapunov stability, quasi asymptotic stability, asymptotic stability and global stability of the equilibrium point.
(b) Draw the phase diagram of the following system :

$$
\begin{aligned}
& \dot{x}=-y+x\left(1-x^{2}-y^{2}\right), \\
& \dot{y}=x+y\left(1-x^{2}-y^{2}\right) .
\end{aligned}
$$

Determine its α and ω limit sets.
(c) Consider the system

$$
\begin{aligned}
& \dot{x}=-y^{3}, \\
& \dot{y}=x^{3} .
\end{aligned}
$$

Show that $(0,0)$ is a nonhyperbolic equilibrium point. Construct a suitable Lyapunov function to show that $(0,0)$ is stable.

$$
6+6+4
$$

5. (a) State Poincare-Bendixson theorem. Use this theorem to show that the following system has at least one periodic orbit :

$$
\dot{x}=x-y-x\left(x^{2}+\frac{3}{2} y^{2}\right),
$$

$$
\dot{y}=x+y-y\left(x^{2}+\frac{1}{2} y^{2}\right) .
$$

(b) Discuss the behaviour of the solution to the second order difference equation

$$
\begin{aligned}
& \dot{x}_{n+2}+c(1+\vartheta) x_{n+1}+c \vartheta x_{n}=0, \\
& 0<c<1, \quad \vartheta>0 .
\end{aligned}
$$

[Turn over]

[5]

Give a rough sketch of the operating diagram on
$c-\vartheta$ parametric plane. $8+8$
6. Define Bendixson-Dulac criterion. 2

