Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.3 (A1.1)

(Advanced Algebra - I)

Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
Notations and Symbols have their usual meanings.
Answer any five questions. $\quad 10 \times 5=50$
(Throughout R denotes a commutative ring with identity.)

1. (a) Define comaximal ideals of a ring. Let A, B, C be three ideals of a ring R such that A, B are comaximal and A, C are comaximal. Show that (i) $A B=A \cap B$ (ii) A and $B C$ are comaximal. $1+2+2$
(b) State Chinese Remainder Theorem for ring. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ be a prime factorization of the integer n. Show that $\mathbb{Z}_{n} \simeq \mathbb{Z}_{p_{1}} \alpha_{1} \times \mathbb{Z}_{p_{2}} \alpha_{2} \times \ldots \times \mathbb{Z}_{p_{r}} \alpha_{r}$ asrings by using Chinese Remainder theorem. $2+3$
2. (a) Let $J(R)$ and $N(R)$ be the Jacobson radical and nilradical of a ring R. Show that
(i) $J(R)$ has no non-zero idempotent element.
(ii) if every ideal of R not contained in $N(R)$ contains a non-zero idempotent then $N(R)=J(R) . \quad 2+3$
(b) Let M be a maximal ideal of a ring R such that $1+m$ is a unit for all $m \in M$. Show that R is a local ring. By using this result show that R / M^{n} is a local ring for every positive integer n. $2+3$
3. (a) Let S be a multiplicatively closed subset of a ring R and I be an ideal of R. Show that $S^{-1} I$ is an ideal of $S^{-1} R$. Hence show that $S^{-1} R / S^{-1} I \simeq S^{-1}(R / I)$. $\quad 2+3$
(b) Let S be a multiplicatively closed subset of a ring R and M be an R-module. Define $S^{-1} M$, the module of fractions w.r.t. S. Let N_{1} and N_{2} be two submodules of M, show that

$$
S^{-1}\left(N_{1} \cap N_{2}\right)=S^{-1}\left(N_{1}\right) \cap S^{-1}\left(N_{2}\right) .
$$

[Turn over]
4. (a) Define primary ideal of a ring. Let P be a primary ideal of a ring R. Show that \sqrt{P} is the smallest prime ideal of R containing P. $2+3$
(b) State and prove Lying-over Theorem for ring. $2+3$
5. (a) Let M_{1} and M_{2} be two finitely generated submodules of an R-module M. Show that $M_{1}+M_{2}$ is a finitely generated R-module. Let R be a ring with 10 elements and M be an R-module with 20 elements. Is M a finitely generated free R-module ? Justify your answer. $3+2$
(b) Let M and N be two R-modules. Show that an R-homomorphism $f: M \rightarrow N$ is regular if and only if ker f is a direct summand of M and Imf is a direct summand of N.
6. (a) Let M, N be two R-modules and F be a free R-module.

Show that every short exact sequence of R-modules and R-homomorphisms
$O \longrightarrow N \xrightarrow{f} M \xrightarrow{g} F \longrightarrow O$ is a split exact sequence. Is the short exact sequence
$O \longrightarrow F \xrightarrow{f^{\prime}} M \xrightarrow{g^{\prime}} N \longrightarrow O$ a split exact sequence ? Justify your answer. 3+2
(b) Define projective module. Show that every free R-module is a projective R-module. $2+3$
7. (a) Define divisible group. Show that an additive abelian group M is a divisible group if and only if \mathbb{Z}-module M is injective. $1+4$
(b) Let R be a ring. Show that $R \otimes_{R} R \simeq R$ as modules.

