Ex/M.Sc/M/3.2/35/2017

Master of Science Examination, 2017
(2nd Year, 1st Semester)

MATHEMATICS

Unit-3.2

(Partial Differential Equations and
Nonlinear Ordinary Differential Equations)
Full Marks : 50
Time : Two Hours

All questions carry equal marks.
Use a separate Answer-Script for each part.
(Symbols have their usual meanings)

Part I I

(Marks - 30)
Answer any three questions.
10×3

1. Discuss the nature of the equation

$$
u_{x x}+y u_{y y}=0
$$

Hence reduce this equation to canonical form when $y<0$.
2. A tanpura string of unit length is pulled upward at the middle so that it reaches a height h. Assume that the initial displacement of the string is

$$
\begin{aligned}
u(x, 0) & =2 h x, 0 \leq x<\frac{1}{2} \\
& =2 h(1-x), \frac{1}{2} \leq x<1
\end{aligned}
$$

Find the subsequent motion of the string if it is released suddenly.
3. Solve the exterior Dirichlet's problem for a circle given by
$\nabla^{2} u=0, \quad a \leq r<\infty, \quad 0 \leq \theta \leq 2 \pi$
$u(a, \theta)=f(\theta), \quad 0 \leq \theta \leq 2 \pi$.

Here ' a ' is the radius of the circle and $f(\theta)$ is known.
4. Suppose that u is a harmonic function in a region D and u and its normal derivative $\frac{\partial u}{\partial n}$ are known at every point of the boundary surface S of the finite region D. Using the fundamental solution of Laplaces equation fund u at any interior point of D.
[Turn over]
5. If $u(x, t)$ be a continuous function which is a solution of $u_{t}=u_{x x}$, in the rectangle $R, 0 \leq x \leq l, 0 \leq t \leq T$, then prove the maximum value of u are attained either on the boundary $t=0$ or on the boundaries $x=0$ and $x=l$.

Hence show that the solution of the following boundary value problem for $u(x, t)$ is unique.
$u_{t}=u_{x x}, \quad 0 \leq x \leq l, \quad 0 \leq t \leq T$.
$u(0, t)=f_{1}(t)$
$u(l, t)=f_{2}(t)$
$u(x, 0)=\varphi(x)$
where $f_{1}(t), f_{2}(t), \varphi(x)$ are continuous functions and $\varphi(0)=f_{1}(0), \varphi(l)=f_{2}(l)$.

[4]
 Part - II

(Marks - 20)
Answer question number 6 and any three from the rest.
6. Find all equilibrium points and their stabilities of the system

$$
\begin{equation*}
\dot{x}=\left|1-x^{2}\right| . \tag{2}
\end{equation*}
$$

7. Use Poincare Bendixon theorem to show that the following system has a limit cycle.

$$
\begin{align*}
& \dot{x}=x-y-x^{3} \\
& \dot{y}=x+y-y^{3} \tag{6}
\end{align*}
$$

8. Use the method of nullclines to draw the phase portrait of the system

$$
\begin{align*}
& \dot{x}=x-y \\
& \dot{y}=1-e^{x} \tag{6}
\end{align*}
$$

9. Classify a planar system in trace-determinant plane. Describe all possible qualitatively different solutions in that plane. 6
[Turn over]
10. Sketch all qualitatively different vector fields as r is varied in the system

$$
\dot{x}=x\left(r-e^{x}\right)
$$

Show that a transcritical bifurcation occurs in the above system. Find the critical value of r at which bifurcation occurs. Draw also the bifurcation diagram.

