Ex/M.Sc/M/B-1.19/37/2017

Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.5 (B-1.19)

(Graph Theory - I)
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
(Symbols have their usual meanings, if not mentioned otherwise.)
Attempt the questions as follows.

1. Answer any one :
(a) Given a connected (p, q)-graph G with $p \geq 4$ and ω as the intersection number of G, prove that $\omega=q$ if and only if G has no triangle.
(b) If a (p, q)-graph G with $p \geq 3$ satisfies

$$
\operatorname{deg} u+\operatorname{deg} v \geq p
$$

for every paid u and v of nonadjacent points, then, using Posa's Theorem, prove G is hamiltonian.
2. Answer any two :
$10 \times 2=20$
(a) Write procedures for preorder, inorder and postorder traversals of a tree T. Prove that the preorder and inorder traversals of T can uniquely reconstruct the tree T.
$6+4=10$
(b) State and prove the Cayleys formula for counting the number of trees. $2+8=10$
(c) Describe Kruskal's algorithm for finding a minimum spanning tree of an edge-weighted connected graph. Prove the correctness of the algorithm.
$5+5=10$
3. Answer any two:
$10 \times 2=20$
(a) If $\Delta(G)=n \geq 3$ and 3 -connected, then G is n colorable unless K_{n+1} is a component of G.
(b) (i) If G is a uniquely n-colorable graph then prove that the subgraph induced by the union of any two color classes in the n-coloring of G is connected.

[3]

(ii) Define chromatic polynomial of graph. Find the chromatic polynomials for a complete graph K_{p} and a wheel graph W_{n}. $5+5=10$
(c) (i) Define symmetric difference of two graphs. Prove that every component of the symmetric difference of two matchings of a graph is either a path or an even cycle.
(ii) Define M-augmenting path for a matching M in a graph G. Prove that a matching in a graph G is maximum if and only if G has no M-augmenting path.
$(1+3)+(1+5)=10$

