Ex/M.Sc/M/B-1.13/36/2017

Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - $\mathbf{3 . 5}$ (B-1.13)

(Differential Geometry and its Applications - I)

Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
Symbols have their usual meanings.
Answer any five questions.

1. (a) Let M be a contact Riemannian manifold. Then prove that M is K-contact manifold iff $\nabla_{X} \xi=-\varphi X$, for any vector field X on M.
(b) Prove that on an almost contact metric manifold,

$$
g(X, \varphi Y)+g(\varphi X, Y)=0 . \quad 7+3
$$

2. (a) In a Kähler manifold, prove that

$$
S(\bar{X}, \bar{Y})=S(X, Y)
$$

(b) Define almost complex structure on an even dimensional differentiable manifold with an example. Check whether it is unique or not.
(c) Prove that $N(X, \bar{Y})=-\overline{N(X, Y)} . \quad 4+3+3$
3. (a) Let M be a K-contact manifold. Then prove that the sectional curvature of any plane section containing ξ is equal to -1 .
(b) Prove that if a vector field V in an almost complex manifold is strictly almost analytic, then $N(V, X)=0$, for every vector field X. What geometric implification can you draw from this result? 4+1
4. (a) Define Riemannian metric on a differentiable manifold. Prove that every differentiable manifold which is Hausdorff and second countable has a Riemannian metric. $1+4$
(b) Define Riemannian convection on a Riemannian manifold. Prove that in a Riemannian manifold, Riemannian metric is covariantly constant.
5. (a) Prove that $\uparrow(X, Y, Z, W)=-R(X, Y, W, Z)$.
[Turn over]

[3]

(b) Prove that a projectively flat Riemannian manifold is an Einstein manifold.
6. (a) If $\bar{\nabla}_{X} Y=\nabla_{X} Y-T(X, Y)$, then proe that $\bar{\nabla}$ is a linear connection and $\bar{T}=-T$.
(b) For any form w, prove that $d\left(f^{*} w\right)=f^{*}(d w)$. 5+5
7. (a) If w is an 1 -form and μ is a 2 -form, find the expression for $w \wedge \mu$.
(b) Define lie group with an example.
(c) Let $M=\mathbb{R}^{2}$ and let $\varphi: \mathbb{R} \times M \rightarrow M$ be defined by $\varphi(t,(x, y))=\left(x e^{2 t}, y e^{-2 t}\right)$. Check whether φ is an 1-parameter group of transformations or not. If so, find its generator.

Does every vector field induce an 1-parameter group of transformation? Justify with example.

