Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS
 Unit-3.1
 (Numerical Analysis)

Full Marks : 30
Time : Two Hours

The figures in the margin indicate full marks.
(Symbols have their usual meanings)

Part-I

(Marks - 15)
Answer any one question.

1. (a) State and prove the necessary and sufficient condition for convergence of an iterative method $\vec{x}^{(k+1)}=B \vec{x}^{(k)}+\vec{d}$, where B is the iterative matrix and \bar{d} is the iterative vector. 8
(b) Use Newton's method to find the intersecting point of the circle $x^{2}+y^{2}=1$ with the hyperbola $x^{2}-y^{2}=1$
near the point $(1,1)$. Show first three steps (correct upto four decimal places).
2. (a) Use SOR method to find solution of the following system of equations

$$
\begin{aligned}
3 x-y+z= & -1 \\
-x+3 y-z= & 7 \\
x-y+3 z= & -7
\end{aligned}
$$

Show first three steps starting from $(0,0,0)$ with the value of the relaxation parameter $\omega=1.25$ (correct upto four decimal places).
(b) Let $f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ be continuously differentiable function on $D \in \mathfrak{R}^{n}$ and $\vec{x}_{0} \in D$. Let $t^{*}>0$ be the minimizer of the function $\phi(t)=f\left(\vec{x}_{0}-t \vec{\nabla} f\left(\vec{x}_{0}\right)\right), t \geq 0$ and let $\vec{x}_{1}=\vec{x}_{0}-t^{*} \vec{\nabla} f\left(\vec{x}_{0}\right)$, then prove that $f\left(\vec{x}_{1}\right)<f\left(\vec{x}_{0}\right)$.
(c) Let $f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ be continuously differentiable function on $D \in \mathfrak{R}^{n}$, and \vec{x}_{k} and \vec{x}_{k+1}, for $k \geq 0$ be two consecutive iterates produced by the method of steepest decent. Show that \vec{x}_{k} and \vec{x}_{k+1} are orthogonal. 3

[3]

Part - II
(Marks - 30)
Answer any one question.
3. (a) What do you mean buy consistency, convergence and stability of a finite difference method?
(b) Describe the explicit finite difference method for solving the boundary-initial value problem $u_{x x}=\frac{1}{c} u_{t}$, $u=u(x, t), a<x<b, t>0, c=$ constant ;

$$
\begin{aligned}
& u(a, t)=u(b, t)=0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

Also derive the Von Neumann stability criterion for the scheme.
4. (a) Write down the finite difference analogue of the equation $u_{x x}+u_{y y}=0$ defined on $R=\{(x, y) \mid a<x<b, c<y<d\}$ with
$u(x, y)=f(x, y)$ for $(x, y) \in S$, where S denotes the boundary of R and f is a continuous function. Hence derive standard and diagonal five point formulae.

Also discuss how the initial guess values or previously computed values of u can be improved by (i) Jacobi iteration method and (ii) Gauss-Seidel iteration method.
(b) Show that the FTCS (forward difference in time and central difference in space) scheme for solving the first order linear wave equation $u_{t}+a u_{x}=0, a(>0)$ constant, is unconditionally stable.

