Ex/M.Sc/M/3.1/35/2017

MASTER OF SCIENCE EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.1

(Numerical Analysis)

Full Marks : 30

Time : Two Hours

The figures in the margin indicate full marks.

(Symbols have their usual meanings)

Part - I

(Marks - 15)

Answer any one question.

- 1. (a) State and prove the necessary and sufficient condition for convergence of an iterative method $\vec{x}^{(k+1)} = B\vec{x}^{(k)} + \vec{d}$, where *B* is the iterative matrix and \vec{d} is the iterative vector. 8
 - (b) Use Newton's method to find the intersecting point of the circle $x^2 + y^2 = 1$ with the hyperbola $x^2 - y^2 = 1$

[Turn over]

near the point (1, 1). Show first three steps (correct upto four decimal places). 7

2. (a) Use SOR method to find solution of the following system of equations

3x - y + z = -1-x + 3y - z = 7x - y + 3z = -7

Show first three steps starting from (0, 0, 0) with the value of the relaxation parameter $\omega = 1.25$ (correct upto four decimal places). 9

- (b) Let $f: \mathfrak{R}^n \to \mathfrak{R}$ be continuously differentiable function on $D \in \mathfrak{R}^n$ and $\vec{x}_0 \in D$. Let $t^* > 0$ be the minimizer of the function $\phi(t) = f(\vec{x}_0 - t\vec{\nabla}f(\vec{x}_0)), t \ge 0$ and let $\vec{x}_1 = \vec{x}_0 - t^*\vec{\nabla}f(\vec{x}_0)$, then prove that $f(\vec{x}_1) < f(\vec{x}_0)$. 3
- (c) Let $f: \mathfrak{R}^n \to \mathfrak{R}$ be continuously differentiable function on $D \in \mathfrak{R}^n$, and \vec{x}_k and \vec{x}_{k+1} , for $k \ge 0$ be two consecutive iterates produced by the method of steepest decent. Show that \vec{x}_k and \vec{x}_{k+1} are orthogonal. 3

[Turn over]

Part - II

Answer any one question.

- 3. (a) What do you mean buy consistency, convergence and stability of a finite difference method ?
 - (b) Describe the explicit finite difference method for solving the boundary-initial value problem $u_{xx} = \frac{1}{c}u_t$, u = u(x, t), a < x < b, t > 0, c = constant;

$$u(a,t)=u(b,t)=0$$

$$u(x,0)=f(x).$$

Also derive the Von Neumann stability criterion for the scheme. 3+12

4. (a) Write down the finite difference analogue of the equation $u_{xx} + u_{yy} = 0$ defined on

$$R = \{ (x, y) \mid a < x < b, c < y < d \} \text{ with}$$

[Turn over]

u(x, y) = f(x, y) for $(x, y) \in S$, where *S* denotes the boundary of *R* and *f* is a continuous function. Hence derive standard and diagonal five point formulae.

Also discuss how the initial guess values or previously computed values of u can be improved by (i) Jacobi iteration method and (ii) Gauss-Seidel iteration method.

(b) Show that the FTCS (forward difference in time and central difference in space) scheme for solving the first order linear wave equation $u_t + au_x = 0$, a(>0) constant, is unconditionally stable. 8+7