Ex/M.Sc/M/B-1.30/36/2017

Master of Science Examination, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.4 (B-1.30)

(Operator Theory -I)
Full Marks : 50
Time : Two Hours

The figures in the margin indicate full marks.
(Symbols and Notations have their usual meanings.)
Answer any five questions.

1. (a) Show that the spectrum of a bounded linear operator $T: X \rightarrow X$ on a complex Banach space X is bounded. Justify whether the result holds for unbounded linear operator or not.
(b) Let $T: l^{\infty} \rightarrow l^{\infty}$ be defined by
$T\left(\xi_{1}, \xi_{2}, \ldots\right)=\left(\xi_{2}, \xi_{3}, \ldots\right)$.

If $|\lambda|>1$ then show that $\lambda \in \rho(T)$ and if $|\lambda| \leq 1$ then $\lambda \in \sigma(T)$. 4
2. (a) Let X be a complex Banach space, $T \in B(X)$ and $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$. Then show that $\sigma(p(T))=p(\sigma(T))$. 7
(b) Let \mathbb{A} be a complex Banach Algebra with identity. Then show that the set G of all invertible elements of \mathbb{A} is an open subset of \mathbb{A}.
3. (a) Let \mathbb{A} be a complex Banach Algebra with identity, S denotes the set of singular elements of \mathbb{A} and Z denotes the set of topological divisor of zero. Then prove that $Z \subset S$ and $B d S \subset Z$. $3+3$
(b) Show that closure of the numerical range of a bounded linear operator on a complex Hilbert space H always contains the spectrum.
4. (a) Let $T: X \rightarrow Y$ be bounded linear operator. Then show that T is compact iff it maps every bounded sequence $\left\{x_{n}\right\}$ in X onto a sequence $\left\{T x_{n}\right\}$ which has a convergent subsequence in Y.
(b) Let Y be a Banach space, X be a normed linear space and let $T_{n}: X \rightarrow Y, n=1,2, \ldots$, be operators of finite rank. If $\left\{T_{n}\right\}$ is uniformly operator convergent, then show that the limit operator is compact.

[3]

5. Let $T: X \rightarrow X$ be a compact linear operator on a normed space X. Then show that for every $\lambda \neq 0$ the range of $T-\lambda I$ is closed. Verify whether the result holds for $\lambda=0$ or not.
6. (a) Let $T: X \rightarrow X$ be a compact linear operator on a normed space. If $\operatorname{dim} X=\infty$, show that $0 \in \sigma(T) .4$
(b) Let $T: l^{2} \rightarrow l^{2}$ be defined by $y=T x, x=\left\{\xi_{j}\right\}$, $y=\left\{\eta_{j}\right\}, \eta_{j}=\alpha_{j} \xi_{j}$ where $\left(\alpha_{j}\right)$ is dense in [0,1]. Find $\sigma_{p}(T), \sigma_{c}(T), \sigma_{r}(T)$ and hence show that T is not compact.
7. (a) Let $T: X \rightarrow X$ be a compact linear operator on a normed space X and let $\lambda \neq 0$. Then for $y \in X$ the equation $T x-\lambda x=y$ has a solution x if and only if y is such that $f(y)=0$ for all $f \in X^{\prime}$ satisfying $T^{\prime} f-\lambda f=0$.
(b) Let $T: X \rightarrow X$ be a compact linear operator on a Banach space X. Then prove that every spectral value $\lambda \neq 0$ of T (if it exists) is an eigenvalue of T.
