Ex/M.Sc/M/B-1.30/36/2017

MASTER OF SCIENCE EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.4 (B-1.30)

(Operator Theory - I)

Full Marks : 50

Time : Two Hours

The figures in the margin indicate full marks.

(Symbols and Notations have their usual meanings.)

Answer any five questions.

- (a) Show that the spectrum of a bounded linear operator
 T: *X* → *X* on a complex Banach space X is bounded.
 Justify whether the result holds for unbounded linear
 operator or not.
 4+2
 - (b) Let $T: l^{\infty} \to l^{\infty}$ be defined by

 $T(\xi_1, \xi_2, ...) = (\xi_2, \xi_3, ...).$

If $|\lambda| > 1$ then show that $\lambda \in \rho(T)$ and if $|\lambda| \le 1$ then $\lambda \in \sigma(T)$.

[Turn over]

5/15 - 35

[2]

- 2. (a) Let X be a complex Banach space, $T \in B(X)$ and $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Then show that $\sigma(p(T)) = p(\sigma(T))$. 7
 - (b) Let A be a complex Banach Algebra with identity. Then show that the set G of all invertible elements of A is an open subset of A.
 3
- 3. (a) Let \mathbb{A} be a complex Banach Algebra with identity, *S* denotes the set of singular elements of \mathbb{A} and *Z* denotes the set of topological divisor of zero. Then prove that $Z \subset S$ and *Bd* $S \subset Z$. 3+3
 - (b) Show that closure of the numerical range of a bounded linear operator on a complex Hilbert space *H* always contains the spectrum.
- 4. (a) Let T: X → Y be bounded linear operator. Then show that T is compact iff it maps every bounded sequence {x_n} in X onto a sequence {Tx_n} which has a convergent subsequence in Y.
 - (b) Let Y be a Banach space, X be a normed linear space and let T_n: X → Y, n = 1, 2, ..., be operators of finite rank. If {T_n} is uniformly operator convergent, then show that the limit operator is compact.

[Turn over]

5/15 - 35

[3]

- 5. Let $T: X \to X$ be a compact linear operator on a normed space X. Then show that for every $\lambda \neq 0$ the range of $T \lambda I$ is closed. Verify whether the result holds for $\lambda = 0$ or not. 8+2
- 6. (a) Let $T: X \to X$ be a compact linear operator on a normed space. If dim $X = \infty$, show that $0 \in \sigma(T)$.
 - (b) Let $T: l^2 \to l^2$ be defined by y = Tx, $x = \{\xi_j\}$, $y = \{\eta_j\}, \ \eta_j = \alpha_j \xi_j$ where (α_j) is dense in [0, 1]. Find $\sigma_p(T), \ \sigma_c(T), \ \sigma_r(T)$ and hence show that Tis not compact. 6
- 7. (a) Let T: X → X be a compact linear operator on a normed space X and let λ≠0. Then for y∈ X the equation Tx λx = y has a solution x if and only if y is such that f(y)=0 for all f∈ X' satisfying T'f λf = 0.
 - (b) Let $T: X \to X$ be a compact linear operator on a Banach space X. Then prove that every spectral value $\lambda \neq 0$ of T (if it exists) is an eigenvalue of T. 4

5/15 - 35