Ex/M.Sc/M/B1.18/36/2017

MASTER OF SCIENCE EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.4 (B1.18)

(Generalized function and wavelet theory - I)

Full Marks: 50 Time: Two Hours

The figures in the margin indicate full marks.

Notations have their usual meanings.

Answer any five questions.

- 1. (a) Define a good function and a fairly good function.
 - (b) Is $\gamma(x) = \begin{cases} 0, & x \le 0 \\ e^{-x^2}, & x > 0 \end{cases}$ a good function? Justify your answer.
 - (c) Prove that if $\gamma(x)$ is a good function and $\psi(x)$ is a fairly good function then $\gamma(x)\psi(x)$ is a good function. 4+2+4

[Turn over]

- 2. (a) Define a regular sequence of good functions.
 - (b) Show that the sequence $\left\{\frac{e^{-\frac{x^2}{n}}}{n}\right\}$ is regular and defines a generalized function $\theta(x)$ connected with the function zero.
- 3. (a) Prove that if $\psi(x)$ is a fairly good function and the sequence $\{\gamma_n(x)\}$ is a regular sequence, then $\{\psi(x)\gamma_n(x)\}$ is regular. If g(x) is a generalized function defined by $\{\gamma_n(x)\}$ then for all good functions $\gamma(x)$,

$$\underset{n\to\infty}{Lt} \int_{-\infty}^{\infty} \psi(x) \gamma_n(x) \gamma(x) dx = \underset{-\infty}{\overset{\infty}{+}} g(x) \psi(x) \gamma(x) dx.$$

- (b) Prove that if f(x) is an ordinary function whose derivative $\frac{df}{dx}$ exists everywhere on \mathbb{R} and
 - $f(x), \frac{df}{dx} \in \mathcal{K}'(\mathbb{R})$ then

[Turn over]

$$f'(x) = \frac{df}{dx},$$

where f'(x) is a generalized function which is the derivative of generalized function f(x). 4+6

- 4. (a) Prove that if $f(x) \in L'(\mathbb{R})$ and $\int_{-\infty}^{\infty} f(t)dt = 1$ then $\underset{n \to \infty}{Lt} mf(mx) = \delta(x) .$
 - (b) Show that

(i)
$$H'(x) = \delta(x)$$

(ii)
$$|x|' = Sgnx$$
 4+(3+3)

5. Prove that

(i)
$$\underset{t\to 0}{Lt} t |x|^{t+1} = 2\delta(x)$$

(ii)
$$\underset{t \to 0}{Lt} t |x|^{t-1} = 0$$

[Turn over]

(iii)
$$\underset{t\to 0}{Lt} \int_{-\infty}^{\infty} t |x|^{t-1} e^{-i\alpha x} dx = 2.$$
 5+2+3

- 6. (a) Prove that if a generalized function is even then its Fourier transform is also even.
 - (b) If g(x) is a generalized function then xg(x) = 0 if and only if $g(x) = c\delta(x)$, c being a constant. 3+7
- 7. (a) Find the Fourier transform of $\delta(x)$.
 - (b) Prove that if $\gamma(x)$ is a good function then its Fourier transform $\hat{\gamma}(\alpha)$ is also a good function. 5+5