Ex/M.Sc/M/3.1/35/2017

MASTER OF SCIENCE EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS

Unit - 3.1

(Advanced Topology)

Full Marks : 50

Time : Two Hours

The figures in the margin indicate full marks.

(Symbols have their usual meanings)

Answer Question No. 1 and any three from the rest.

- 1. Give an example of a topological space which is not metrizable. 2
- 2. (a) Let X be a topological space and (s_n: n ∈ D) be a net in X. Prove that a point x₀ ∈ X is a cluster point of (s_n: n ∈ D) iff some subnet of (s_n: n ∈ D) converges to x₀.
 - (b) Define an ultrafilter. Prove that a filter F în X is an ultrafilter in X iff any subset A of X which intersects every member of F belongs to F .
 [Turn over]

5/2 - 60

- (c) Let X and Y be two topological spaces. Prove that a mapping f: X → Y is continuous at a point x₀ ∈ X iff for every net (s_n: n ∈ D) in X converging to x₀, the net (f(s_n): n ∈ D) converges to f(x₀).
- 3. (a) Let (X, τ) be a non-compact topological space and let X* = X ∪ {∞} where ∞ is an element not in X. Denote by τ*, the family consisting of φ, X*, all members of τ and all subsets U of X* such that X* \U is a closed compact subset of X. Prove that (X*, τ*) is a compactification of (X, τ).
 - (b) Let X be a Tychonoff space which is not compact. Let C denote the collection of all T₂-compactifications of X. Then prove that Alexandroff's one point compactification X^{*} is the minimum element and Stone-Czech compactification β(X) is the maximum element in (C, ≥).
- 4. (a) Define a paracompact space. If every open cover of a topological space X has a closed locally finite refinement then show that X is paracompact.

[Turn over]

5/2 - 60

[3]
---	---	---

(b)	Prove that every regular Lindeloff space is paracompact.
(c)	Prove that a countable compact metric space is totally bounded. Is the converse true ? Justify. 3+1
5. (a)	Prove that a complete totally bounded metric space (X, d) is compact. Give two examples to show that both completeness and total boundedness are essential. 4+3
(b)	State and prove Stone-Weirstrass Theorem. 8
(c)	When is a topological space called metrizable ? 1
6. (a)	State and prove Uryshon's Metrization Theorem. 8
(b)	Prove that a topological space is uniformizable iff it is completely regular. 8

5/2 - 60