Ex/M.Sc/M/1.3/32/2017

MASTER OF SCIENCE Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS

Unit-1.3

(Complex Analysis)

Full Marks: 50 Time: Two Hours

The figures in the margin indicate full marks.

Symbols/Notations have their usual meanings.

Answer Question No. 7 and any four questions from the rest.

- 1. (a) Let f(z) be holomorphic in a simply-connected open region D and Γ be a positively oriented rectifiable closed Jordan curve such that $I(\Gamma) \cup \Gamma \subseteq D$. Prove that the values of the holomorphic function f(z) on Γ uniquely determine its value at any point in $I(\Gamma)$.
 - (b) Let f(z) and g(z) be holomorphic at $z = z_0$ and $f(z_0) = g(z_0) = 0$. If $g'(z_0) \neq 0$, prove that $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$ 5+3

[Turn over]

2. (a) Let $D \subseteq C$ be an open region and Γ be a rectifiable curve such that D and Γ are disjoint point sets. If f(z) is continuous on Γ , then show that the function

$$F(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)d\zeta}{\zeta - z}$$
 for $z \in D$

is holomorphic in D.

(b) Let Γ and Γ' be two rectifiable closed Jordan curve both oriented in the same sense such that $\Gamma' \subset I(\Gamma) \subset D \subset C$. If f(z) is holomorphic in the open region D, then prove that

$$\oint_{\Gamma} f(z)dz = \oint_{\Gamma} f(z)dz.$$
 5+3=8

- 3. (a) Define singular point or singularity of a complex valued function f(z) defined in an open region $D \subseteq C$.
 - (b) Let $z_0 \in D \subseteq C$ be an isolated singularity of a complex valued function f(z) defined in an open region $D \subseteq C$. With the help of the Laurent series expansion of f(z) in some deleted neighbourhood $N'(z_0; \rho) \subseteq D(\rho > 0)$, define (i) a pole of order m at $z = z_0$, where m is a positive integer, and (ii) an essential singularity at $z = z_0$.

- (c) Prove that f(z) has a pole of order m at $z = z_0$ if and only if $\frac{1}{f(z)}$ has a zero of order m at $z = z_0$.
- (d) If f(z) is holomorphic and bounded for |z| > R, then show that the Laurent series expansion of f(z) for |z| > R is of the form $a_0 + \sum_{n=1}^{\infty} a_{-n} z^{-n}$. 1+2+2+3=8
- 4. (a) Using Lioville's theorem prove the Fundamental theorem of algebra.
 - (b) Let f(z) be holomorphic in an open region $D \subseteq C$ and E be the set of all zeros of f(z) in D. If z_0 is a limit point of E such that $z_0 \in D$ then show that f(z) is identically zero in D.
 - (c) Let f(z) be holomorphic in an open region $D \subseteq C$ and E be the set of all zeros of f(z) in D. If f(z) is not identically zero in D, then show that every point of E is an isolated point of E.

 4+2+2=8
- 5. (a) State and prove Maximum Modulus Principle.

[Turn over]

- (b) If z_0 is a simple pole of f(z), then prove that $Res(f; z_0) = \lim_{z \to z_0} (z z_0) f(z)$ 5+3=8
- 6. (a) Use Rouche's theorem to find the number of roots of the equation $z^8 z^5 + 5z^2 + 1 = 0$ within the circle |z| = 1.
 - (b) Let w = f(z) = u(x,y) + iv(x,y) be defined in an open region $D \subseteq C$ such that the partial derivatives of u and v are continuous in D and the Jacobian $\frac{\partial(u,v)}{\partial(x,y)} \neq 0 \text{ in } D. \text{ If the mapping } w = f(z) \text{ is conformal in } D, \text{ then prove that } f(z) \text{ is holomorphic in } D.$
- 7. Prove the following results with the help of the method of the contour integration (any *three*): $6\times3=18$

(a)
$$\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} dx = \sqrt{\frac{\pi}{2}},$$

(b)
$$\int_{0}^{2\pi} \frac{1}{(a+b\cos\phi)^{3}} d\phi = \frac{\pi(2a^{2}+b^{2})}{(a^{2}-b^{2})^{5/2}} (a>b>0),$$

(c)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

(c)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
,
(d) $\int_{0}^{\infty} \frac{\ln x}{x^2 + 1} dx = 0$.