Ex/M.Sc/M/1.1/32/2017

MASTER OF SCIENCE Examination, 2017

(1st Year, 1st Semester)

MATHEMATICS

Unit-1.1

(Algebra - I)

Full Marks: 50

Time: Two Hours

The figures in the margin indicate full marks.

Unexplained symbols and notations have their usual meanings.

Group-A

(Marks - 26)

Answer Q. No. 1 and two from the rest.

1. Answer any five:

 $2 \times 5 = 10$

- (a) Every Abelian simple group is a finite cyclic group of prime order Justify!
- (b) Obtain S_3 as a suitable semidirect product.
- (c) Are the groups $\mathbb{Z}_{26} \oplus \mathbb{Z}_{42} \oplus \mathbb{Z}_{49} \oplus \mathbb{Z}_{200} \oplus \mathbb{Z}_{100}$ and $\mathbb{Z}_4 \oplus \mathbb{Z}_{91} \oplus \mathbb{Z}_{300} \oplus \mathbb{Z}_{56} \oplus \mathbb{Z}_{175}$ isomorphic? Answer with reasons.

- (d) If p is a prime and G is a nonabelion group of order p^3 then |Z(G)| = p and $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

 Explain!
- (e) For $n \ge 5$, S_n is not solvable Explain!
- (f) There is no simple group of order 1989 Justify!
- (g) Any unique sylow subgroup is a characteristic subgroup— Explain!
- (a) Prove that every nilpotent group is solvable. Justify the converse of this result.
 - (b) Prove that if n_p is the number of sylow p-subgroups of a group G then G has a subgroup of index n_p .
- (a) Deduce orbit formula for group action. Use it to show that the number of elements in the conjugacy class of any element of a finite group divides the order of the group.
 - (b) Prove that if a group G contains a subgroup $(\neq G)$ of finite index, it contains a normal subgroup $(\neq G)$ of finite index.

- 4. (a) Suppose G is a group of order pqr where p, q, r are primes with p < q < r. Prove that G has a normal Sylow r-subgroup.
 - (b) Suppose G is a group with |G| = 60 and G has more than one Sylow 5-subgroups. Prove that G is simple.

6

Group-B

(Marks - 14)

Answer Q. No. 5 and any two from the rest.

5. Answer any four.

 $1 \times 4 = 4$

- (a) Suppose R is a commutative ring with identity $(\neq 0)$ such that $\{0\}$ is a maximal ideal. Then R is a field Explain!
- (b) Suppose I_1 , I_2 and I_3 are three ideals of a ring. Then which of following are necessarily true?

(i)
$$I_1 + (I_2 \cap I_3) \subseteq (I_1 + I_2) \cap (I_1 + I_3)$$

(ii)
$$I_1 + (I_2 \cap I_3) \supseteq (I_1 + I_2) \cap (I_1 + I_3)$$

(iii)
$$I_1 \cap (I_2 + I_3) \subseteq (I_1 \cap I_2) + (I_1 \cap I_3)$$
.

(iv)
$$I_1 \cap (I_2 + I_3) \supseteq (I_1 \cap I_2) + (I_1 \cap I_3)$$

- (c) Let a, b be elements of a commutative ring with identity. Then prove that a divides b if and only if $\langle b \rangle \subseteq \langle a \rangle$.
- (d) Z is a Noetherian ring but not Artinian Justify!
- (e) If F is a field then $\langle x \rangle$ is a maximal ideal in F[x], but it is not the only maximal ideal Explain!
- (f) $x^2 + 1$ has an infinite number of distinct roots in the division ring of real quaternions Justify!
- 6. (a) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by $T(x_1, x_2, x_3, x_4) = (2x_1 + x_2, 2x_2, 3x_3, 3x_4)$. Prove that $\{f(x) \in \mathbb{R}[x]: f(T) = 0\}$ is a principal ideal of the ring $\mathbb{R}[x]$. Find the unique monic generator of this ideal.
 - (b) What is meant by the *p*-th cyclotomic polynomial over $\mathbb{Z}[x]$? Prove that it is irreducible. (2+1)+(1+1)

- 7. (a) Prove that the polynomial $8x^3 6x 1 \in \mathbb{Z}[x]$ has no integral root. Hence prove that it is irreducible in Q[x]. Write the statement of the main result (general form) used to solve the above problem.
 - (b) Write the statement of the General form of the Chinese Remainder Theorem.
- 8. (a) Illustrate with an example that there exists of subring R of a ring S (having the same identity) such that there exists $a \in R$ which is an irreducible element in S but a reducible element in R.
 - (b) Suppose $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and p is a prime. Let $\overline{f}(x) = \sum_{i=0}^{n} \overline{a}_i x^i$ where \overline{a} is the image of a under the canonical epimorphism $\mathbb{Z} \to \mathbb{Z}_p$, $a \mapsto \overline{a}$. Prove that if f(x) is monic and $\overline{f}(x)$ is irreducible in $\mathbb{Z}_p[x]$ for some prime p, then f(x) is irreducible in $\mathbb{Z}[x]$.

Group - C

(Marks: 10)

- 9. Justify any *four* of the following statements providing either example or proof (as appropriate). 1×4=4
 - (a) In a module, a linearly independent set can be extended to a basis.
 - (b) In a module, a spanning set may not be reduced to a basis.
 - (c) For a simple R-module M, the ring $\operatorname{End}_R(M)$ is a division ring.
 - (d) If \mathbb{Z}_n is $\mathbb{Z}_{m\mathbb{Z}}$ -module via the canonical action then n divides m.
 - (e) For a left R-module M, the annihilator of M in R i.e., $Ann_R(M)$ is the Kernel of the induced ring homomorphism $R \to \text{End } (M), r \to f_r, f_r : M \to M,$ $m \mid \to rm$.
 - (f) A ring R considered as a left R-module may be simple but the ring R may not be simple.

10. Answer any one:

 $6 \times 1 = 6$

- (a) Suppose T is a linear operator on the vector space $V = \mathbb{R}^7$ over \mathbb{R} . Then \mathbb{R}^7 is canonically an $\mathbb{R}[x]$ module via T.
 - (i) Prove that \mathbb{R}^7 is finitely generated as well as a torsion $\mathbb{R}[x]$ -module.
 - (ii) By the structure theorem of finitely generated module over PID, prove that
 - $\mathbb{R}^7 \simeq \frac{\mathbb{R}[x]}{\langle f_1(x) \rangle} \oplus \frac{\mathbb{R}[x]}{\langle f_2(x) \rangle} \oplus ... \oplus \frac{\mathbb{R}[x]}{\langle f_k(x) \rangle}$ with $f_1(x)|f_2(x)|f_3(x)|...|f_k(x)$. If the minimal polynomial of T is $(x-2)^2(x+3)^3$, find the possible values of k and $f_i(x)$'s in each case.
- (b) (i) Give an example of a nonfree module with justification.
 - (ii) Illustrate with an example that a submodule need not be a direct summand of the module.

- (iii) Let M be a left R-module. Define $A_R(m)$ for any $m \in M$.
- (iv) Every free module is torsion free but not vice versa

 Justify!