M. Sc. Chemistry Examination, 2017

(4th Semester)

INORGANIC CHEMISTRY (SPECIAL)

PAPER - XIII-I

Time : Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - I - 4131

- 1. Determine the number of frequencies, their symmetrics, IR, Raman activities of CH_4 molecule and hence assign the CH and HCH vibrations. 6+2
- 2. Describe the First Order Jahn-Teller distortion in $[Ni(H_2O)_6]^{2+}$ with the help of Group Theory. [Normal Modes of Vibrations : $A_{1g} + E_g + T_{2g} + 2T_{1u} + T_{2u}$]
- 3. Find out the vibronically allowed and forbidden transitions for the polarized crystal spectrum of *trans*- $[Co(en)_2Cl_2]^+$ [Where ${}^1A_{1g}$ is the ground state] 8
- 4. Show that the D term of free d¹ system split into ${}^{2}T_{1g} + {}^{2}E_{g}$ in octahedral ligand fields.

4

5

0	E	8C3	6C'2	6C4	$3C_2 = (C_4)^2$		quadratic functions
A	+1	+1	+1	+1	+1		$x^{2}+y^{2}+z^{2}$
\mathbf{A}_2	+1	+1	-1	-1	+1		-
E	+2	-1	0	0	+2	2	$(x^2-y^2, 2z^2-x^2-y^2)$
T ₁	+3	0	-1	+1	-1	$(x, y, z) (R_x, R_y, R_z)$	-
T ₂	+3	0	+1	-1	-1	-	(xy, xz, yz)

D _{4h}	E	2C4(z)	C ₂	2C'2	2C"2	i	2S4	σ_{h}	2 σ ,	2 0 d	linear functions, rotations	quadratic functions
Alg	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	22 -	$x^{2}+y^{2}, z^{2}$
A ₂₈	+1	+1	+1	-1	-1	+1	+1	+1	-1	-1	R _z	-
Blg	+1	<u>1</u>	+]	+1	-1	+1	-1	+1	+1	-1	-	x^2-y^2
B _{2g}	+1	-1	+1	-1	+1	+1	-1	+1	-1	+1		ху
Eg	+2	0	-2	0	0	+2	0	-2	0	0	$(\mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}})$	(xz, yz)
A _{1u}	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-	-
A _{2µ}	+1	+1	+1	-1	-1	-1	-1	-1	+1	+1	Z	-
Blu	+1	-1	+1	+1	-1	-1	+1	-1	-1	+1	-	-
B_{2u}	+1	-1	+1	-1	+1	-1	+1	-1	+1	-1	-	-
Eu	+2	0	-2	0	0	-2	0	+2	0	0	(x, y)	-

Td	Е	8C3	3C ₂	6S4	6σ _d	linear functions, rotations	quadratic functions
AL	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}+z^{2}$
A ₂	+]	+1	+1	-1	-1	-	-
E	+2	-1	+2	0	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
T ₁	+3	0	-1	+1	-1	(R_x, R_y, R_z)	-
T ₂	+3	0	-1	-1	+1	(x, y, z)	(xy, xz, yz)

Oh	D _{4h}
¹ A _{1q}	¹ A _{1g} (ground state)
${}^{1}T_{1q}$	$^{1}A_{2g} + {^{1}E_{g}}$
${}^{1}T_{2q}$	${}^{1}B_{2q} + {}^{1}E_{q}$

UNIT - I - 4132

- 5. a) Construct the LGOs of H_2O group theoretically.
 - b) Determine the valence orbitals of O atom in water with justification.
 - c) Draw the molecular orbital energy level diagram along with the respective orbital of water with and without considering s-p mixing. Hence compare and comment on the nature of HOMO and HOMO 1 for both cases.
- 6. a) Draw Walsh diagram of H_3^+ and H_3^- and hence predict the geometry of H_3^+ .
 - b) Determine the geometry of BH_2 and NH_2 in their first excited states. 3+3
- 7. a) Briefly discuss direct and indirect relativistic effects and their consequences on the size and energy of orbitals.
 - b) Unlike their lighter congeners, osmium, iridium and platinum show oxidation state 'IV'. Explain.
 - c) Account for the coloration of silver and gold. 3+3+3