M.Sc. CHEMISTRY EXAMINATION, 2017

($4^{\text {th }}$ Semester)

ANALYTICAL CHEMISTRY SPECIAL

PAPER-XIII-A

Time: Two Hours
(25 marks for each Unit)
Full Marks: 50
Use a separate answerscript for each Unit.
UNIT-A-4131

1. Answer any four questions
4×3
(a) Compare Accuracy with Precision. Give one example each for instrumental error and personal error.
(b) How does population standard deviation differ from sample standard deviation? Mention the significance of the number of degrees of freedom in relation to sample standard deviation.
(c) Calculate the standard deviation of the following:
(i) $y=a\left(\pm s_{a}\right) X a\left(\pm s_{a}\right)$
(ii) $y=\left\{a\left(\pm \mathrm{S}_{\mathrm{a}}\right)\right\}^{2}$
where, $\mathrm{a}=4$ and $\mathrm{s}_{\mathrm{a}}= \pm 0.2$
Give reason in support of the difference in results, if any.
(d) What do you mean by confidence interval, confidence level and significance level? Cite examples.
(e) A new procedure for the rapid determination of the percentage of sulphur in kerosene was tested on a sample, known from the method of preparation, to contain 0.123%. The results were $\% \mathrm{~S}=0.112,0.118,0.115$ and 0.119 . Do the data indicate that there is a bias in the method at 95% confidence level? (Given: Critical value of t for 3 degrees of freedom and 95% confidence level is 3.18).
2. (a) Briefly enumerate the basic principle of High Frequency Titration. Mention its advantage(s) and disadvantage(s). Provide two examples of this titration. $3+2+1$
(b) Citing at least one example for each case, discuss about the role of 'Cathodic depolarizer' and 'Anodic depolarizer' in electrogravimetry.
(c) Write a short note on 'Ellipsometry'.

Unit - A - 4132

3. (a) What is a liquid-liquid chromatography? Derive the relation $\log \mathrm{K}_{\mathrm{D}}=\log \mathrm{V}_{\mathrm{a}}+\alpha^{\prime}\left(\mathrm{S}^{0}-\varepsilon^{0} \mathrm{~A}_{\mathrm{s}}\right)$; where all the $\begin{array}{ll}\text { terms have their usual meaning. } & 31 / 2\end{array}$
(b) What is high performance size-exclusion chromatography? How would you explain the separation of fullerenes C_{60} and C_{70} by size exclusion chromatography?
(c) Derive the relation: $T_{m} R^{B}=H / u\left\{16 R_{s}{ }^{2}[\alpha /(1-\alpha)]^{2}\left[\left(1+\mathrm{k}_{\mathrm{B}}{ }^{\prime}\right)^{3} / \mathrm{k}_{\mathrm{B}^{\prime}}{ }^{2}\right\}\right.$; where all the terms have their usual meaning.
(d) What are the different types of detectors used in Gas Chromatography? Give the construction of FID detector? Why it is called Universal detector?

OR

Describe the construction of Latex-agglomerated anion exchangers. What are the advantages of it over silica based anion exchangers?
4. (a) What stands for the "equilibrium" in solvent extraction process? What is ion pair and ion pair extraction?

$$
\text { Give one example of ion pair extraction with the number of equilibrium involved. } 1+2+21 / 2
$$

(b) What is continuous extraction and continuous counter current extraction? Describe two different methods which are utilized for continuous extraction.
(c) What do you mean by solid-liquid extraction? How the Calcium, Strontium and Barium salts can be separated using the solvent extraction technique?

