M. Sc. Chemistry Examination, 2017

(4th Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XIII-P

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 4131

Answer any two questions

- 1. a) Using Branching diagram, find the number of possible spin multiplets of a 7-electron system. $1\frac{1}{2}$
 - b) Write the Slater determinantal form of the wave function of a 3-electron system and show that it satisfies Pauli anti-symmetry principle.
 - c) Evaluate the expression of H_{ij} in terms of one and two electron integrals, when

$$D_i = \mid \phi_1 \overline{\phi}_1 \phi_2 \phi_3 \mid \text{ and } \quad D_j = \mid \phi_1 \overline{\phi}_1 \phi_2 \phi_4 \mid.$$

d) What are the Slater-Condon rules? If the wave function of a 3-electron system is represented by

$$\frac{1}{\sqrt{2}}(|\phi_1\overline{\phi}_2\phi_3|-|\overline{\phi}_1\phi_2\phi_3|), \text{ find out the energy expectation value using Slater-Condon rules.} \qquad 6$$

OR

Elucidate the Hartree-Fock self-consistent field (HF-SCF) method to solve the Schrödinger equation for many electron atom. What is the physical significance of Fock operator? Briefly describe the MCSCF method. Define correlation energy. $6\frac{1}{2}+1+3+2$

2. a) What is Koopman's theorem ? Using Hartree-Fock SCF orbitals, prove the theorem for a N-electron system. $6\frac{1}{2}$

OR

Write down the Kohn-Sham equations for the calculation of molecular structure with the meaning of the terms used. Elucidate the iterative procedure for solving Kohn-Sham equations in Density Functional Theory (DFT). $2+4\frac{1}{2}$

	b)	Derive an expression of the transition dipole moment for a transition from the ground singlet to t	he
		lowest excited singlet state of H ₂ .	3
		OR	
		Derive the quantum mechanical Virial Theorem.	3
	c)	Prove that the Configuration Interaction (Cl) wave function corresponding to the lowest root of l	H ₂
		tends to the homopolar dissociation (ignore spin functions).	3
		OR	
		State the basic principle of CI method in theoretical Chemistry.	3
3.	a)	What are the approximations used in Hückel Molecular Orbital (HMO) theory? Using HM	О
		theory, calculate the energy levels for cyclobutadiene and butadiene. $2\frac{1}{2}+2+$	-2
	b)	Apply HMO theory to derive a general expression for the energy level and wave function of a cyc	lic
		conjugated polyene having N carbon atoms (N may be odd or even).	6
		OR	
		For a heteronuclear diatomic molecule, calculate the energy levels by using linear variational theorems.	ory
		and also find out the coefficient of linear combination	6

UNIT - P - 4132

- 4. Answer *any three* questions:
 - a) Define surface excess. Derive,

$$d\gamma = -q_M dV - \frac{q_M}{Z_i F} d\mu_j - \sum_i \Gamma_i d\mu_i$$

for an electrolyte, where γ = surface tension & Γ_i = surface excess for i-th type of species at the interface and all other terms bear usual significance.

- b) i) How does the contact adsorption influence the capacity of the interface? Derive the necessary relation and explain.
 - ii) How is the extent of contact adsorption on the surface of an electrode determined from electrocapillary measurements?
- c) i) Show that the parallel plate condenser model can explain the electro-capillary curve which is perfect parabolic in nature.
 - ii) Give salient features of the Stern model of double layer and explain the total capacity at an electrode solution interface at high and low concentrations separately.
 3+3
- d) Show that the extent of adsorption of a neutral organic molecule at an electrode-aqueous solution interface is expected to pass through a maximum around PZC. Explain the significance of the fact that this maximum is observed at a potential slightly negative to PZC.
- 5. i) Derive an expression of the capacitance of an extrinsic semiconductor immersed in an electrolyte solution, as a function of potential.
 - ii) Show that the capacitance-potential profile is asymmetric for extrinsic semiconductor and symmetric for intrinsic semiconductor. $4\frac{1}{2}+2\frac{1}{2}$

OR

- i) Distinguish between photovoltaic and photo synthetic solar cells by depicting energy diagrams.
- ii) What are the advantages of using dye-sensitized over normal solar cells? Explain the action of dye-sensitized solar cells with the help of schematic energy diagrams for both n- and p- type materials.