ii) Indicate the change of corrosion potential and corrosion current using Evans diagrams for both cathodic and anodic inhibitors and cathode and anode-affecting bacteria.

4
5. Answer any two questions :
i) Calculate the change in activation energy of the cathodic process at an electrode, when potential difference changes from 0.5 V to 0.75 V at $25^{\circ} \mathrm{C}$. Use $\beta=0.7$ and $\mathrm{n}=2$.
ii) The equilibrium exchange current density of an electrode, $\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{H}^{+}(\mathrm{aq})$ is $0.79 \mathrm{~mA} \mathrm{~cm}^{-2}$ at 298 K . Calculate the current obtained from the Pt -foil of area $10 \mathrm{~cm}^{2}$, when the overpotential is 7 mV .
iii) Derive Nernst equation from kinetic consideration.

M. Sc. Chemistry Examination, 2017

(3rd Semester)
 Physical Chemistry Special
 Paper - XI-P

Time: Two hours
Full Marks : 50
(25 marks for each unit)
Use a separate answerscript for each unit.

UNIT - P-3111

Answer any two from the following questions

1. a) State and prove quantum mechanical variation theorem. How can it be extended to excited states? 4+2
b) Consider a one dimensional Harmonic Oscillator whose trial wave function is represented by $\mathrm{e}^{-\mathrm{ax}}{ }^{2}$. Apply variational method to determine the optimum value of the variational parameter, a.
2. a) Derive an expression of the first order wave function correction for the $\mathrm{n}^{\text {th }}$ non-degenerate state using Rayleigh-Schrödinger perturbation theory. Comment on the significance of such correction. $5+1 \frac{1}{2}$
b) Show how degenerate perturbation theory can be applied to the first excited states of $\mathrm{He}(1 \mathrm{~s} 2 \mathrm{~s}: 1 \mathrm{~s} 2 \mathrm{p})$ atom to lift the degeneracy partially. Include only the first order perturbation energy correction.
or
Explain the concept of coordinate and momentum representation of eigenstates. Show how one representation can be converted into another.

$$
1 \frac{1}{2}+1 \frac{1}{2}
$$

Explain Normal Zeeman Effect. Mention one application of it.
$2+1$
3. a) Find the eigenvalues and normalized eigenvectors of the following matrix, A .

$$
A=\left(\begin{array}{cc}
2 & 2 \\
2 & -1
\end{array}\right)
$$

i) Is A real and symmetric? Is A hermitian ?
ii) Is the eigenvector matrix C orthogonal ? Is the eigenvector matrix C unitary?
iii) Write down C^{-1} without doing any calculation.
iv) Verify that $\mathrm{C}^{-1} \mathrm{AC}$ equals the diagonal matrix of eigenvalues. $7 \frac{1}{2}$
b) Consider a two-level system (level-a \& b) perturbed by a time-dependent perturbation, $\mathrm{H}^{\prime}(\mathrm{t})$. Derive the general expressions governing the time-evolution of the two states. Obtain up to the second order expressions from it.

UNIT - P-3112

Answer anytwo questions.

4. a) i) When does the concentration overpotential arise ? Define it and derive an equation relating concentration overpotential and limiting current density of an electronation reaction. $1+1+4$
ii) Derive the reciprocal relation: $1 / \mathrm{i}=1 / \mathrm{i}_{\mathrm{F}}+1 / \mathrm{i}_{\mathrm{L}}$, where the terms bear usual significance. Show the condition of obtaining the activation controlled current from this relation.
b) i) How can you determine equilibrium exchange current density, transmission co-efficient and stoichiometric number experimentally using high and low field approximations of Generalized Butler Volmer equation? 5
ii) Elucidate the mechanism of an electrochemical reaction: $\mathrm{Fe}^{2+}+2 \mathrm{e} \rightleftharpoons \mathrm{Fe}$, given that
$\vec{\alpha}=0.5, \bar{\alpha}=1.5, \mathrm{P}_{\mathrm{Fe}^{2+}}=1, \mathrm{P}_{\mathrm{OH}^{-}}=1$ and $\mathrm{r}=1$, where
the terms bear usual significances.
c) i) Compare order of a chemical and electrochemical reaction. How does the order help in determining the mechanism of hydrogen evolution reaction ? Give two examples and derive their rate equations.
