ii) Indicate the change of corrosion potential and corrosion current using Evans diagrams for both cathodic and anodic inhibitors and cathode and anode-affecting bacteria.

5. Answer *any two* questions:

 $2\frac{1}{2}x2$

- i) Calculate the change in activation energy of the cathodic process at an electrode, when potential difference changes from 0.5V to 0.75V at 25°C. Use β = 0.7 and n=2.
- ii) The equilibrium exchange current density of an electrode, $Pt/H_2(g)/H^+(aq) \ is \ 0.79 mA \ cm^{-2} \ at \ 298 \ K. \ Calculate \ the current obtained from the Pt-foil of area \ 10 \ cm^2, \ when the overpotential is 7 mV.$
- iii) Derive Nernst equation from kinetic consideration.

Ex/MSc/CH/3/U-P3111/13/2017

M. Sc. Chemistry Examination, 2017

(3rd Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XI-P

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 3111

Answer any two from the following questions

- 1. a) State and prove quantum mechanical variation theorem. How can it be extended to excited states? 4+2
 - b) Consider a one dimensional Harmonic Oscillator whose trial wave function is represented by e^{-ax^2} . Apply variational method to determine the optimum value of the variational parameter, a. $6\frac{1}{2}$
- 2. a) Derive an expression of the first order wave function correction for the nth non-degenerate state using Rayleigh-Schrödinger perturbation theory. Comment on the significance of such correction. $5+1\frac{1}{2}$
 - b) Show how degenerate perturbation theory can be applied to the first excited states of He (1s2s: 1s2p) atom to lift the degeneracy partially. Include only the first order perturbation energy correction.

[Turn over

[3]

or

Explain the concept of coordinate and momentum representation of eigenstates. Show how one representation can be converted into another. $1\,\frac{1}{2}+1\,\frac{1}{2}$

Explain Normal Zeeman Effect. Mention one application of it. 2+1

3. a) Find the eigenvalues and normalized eigenvectors of the following matrix, A.

$$A = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$$

- i) Is A real and symmetric? Is A hermitian?
- ii) Is the eigenvector matrix C orthogonal ? Is the eigenvector matrix C unitary ?
- iii) Write down C^{-1} without doing any calculation.
- iv) Verify that $C^{-1}AC$ equals the diagonal matrix of eigenvalues. $7\frac{1}{2}$
- b) Consider a two-level system (level-a & b) perturbed by a time-dependent perturbation, H'(t). Derive the general expressions governing the time-evolution of the two states. Obtain up to the second order expressions from it.

5

UNIT - P - 3112

Answer any two questions.

- 4. a) i) When does the concentration overpotential arise?

 Define it and derive an equation relating concentration overpotential and limiting current density of an electronation reaction.

 1+1+4
 - ii) Derive the reciprocal relation: $1/i=1/i_F+1/i_L$, where the terms bear usual significance. Show the condition of obtaining the activation controlled current from this relation.
 - b) i) How can you determine equilibrium exchange current density, transmission co-efficient and stoichiometric number experimentally using high and low field approximations of Generalized Butler Volmer equation?

 5
 - ii) Elucidate the mechanism of an electrochemical reaction: $Fe^{2+} + 2e \Longrightarrow Fe$, given that $\vec{\alpha} = 0.5$, $\vec{\alpha} = 1.5$, $P_{Fe^{2+}} = 1$, $P_{OH^-} = 1$ and r = 1, where the terms bear usual significances.
 - c) i) Compare order of a chemical and electrochemical reaction. How does the order help in determining the mechanism of hydrogen evolution reaction? Give two examples and derive their rate equations.

[Turn over