2. Answer *any five* questions :

 $2\frac{1}{2} \times 5$

- a) What do you mean by ORD?
- b) Discuss the nature of CD spectra of (-) Menthone in different solvents.
- c) How we can isolate different isomers of tris(s-alaninato) cobalt(III) complex ?
- d) Considering one specific example explain how position of a functional group of a molecule can be determined using CD.
- e) What is LASER Raman spectroscopy?
- f) What are the advantages of Raman spectroscopy over Infrared spectroscopy?

M. Sc. CHEMISTRY EXAMINATION, 2017

(3rd Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XII - I

Time: Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each group.

UNIT - I - 3121 - a

- 1. Starting from Bloch equation derive the required relation between FID signal and T_1 that can be applied in determining longitudinal relaxation time (T_1) . Describe in detail the Inversion Recovery (IR) method. 2+2
- 2. a) How could you identify all the possible isomers of the compound $SnF_4(base)_2$ from their NMR spectra?
 - b) Describe in detail the ¹⁹F NMR spectrum of XeF₄.

3+2

- 3. Explain why J_{13C-H} coupling constants of $-CH_2$ moiety in $(C_6H_5)_2CH_2$ and $(CH_3)_2CH_2$ differ from their corresponding carbonium ions.
- 4. Comment on *any one* of the followings:
 - a) 19 F NMR of HPF₂.
 - b) 31 P NMR of P_4S_3 .

 $1\frac{1}{2}$

[Turn over

[3]

UNIT - I - 3121b

- 5. "While PFCl₄ retains its molecular symmetry in crystalline state PPhCl₄ does not." Explain on the basis of NQR spectra. $2\frac{1}{2}$
- 6. Complexes of composition FeX₂ (pyridine)₂, may be monomeric with four coordination or polymeric with six coordination in case of Fe. From the data given below for X = Cl and I, giving proper reason, deduce which one is polymeric.

<u>Complex</u>	<u>IS/mms⁻¹</u>	QS/mms ⁻¹	
$FeCl_2(Py)_2$	1.21	1.25	
$FeI_2(py)_2$	0.86	1.33	3

- 7. Explain why the complex $[Co(NH_3)_6]^{3+}$ shows NQR resonance for ¹⁴N but not for ⁵⁹Co. While both isotopes have $I \ge 1$.
- Deduce the required relation between quadrupole coupling constant and radiofrequency applied to observe NQR spectrum of CH₃D molecule.
- 9. Why Mössbauer spectrum of ⁵⁷Fe often appears as doublet?

UNIT - 3122

Answer the following questions

- a) What makes a molecule Raman active? Using classical theory, explain the occurrence of Stokes and anti-stokes Raman scattering.
 - b) The equilibrium vibration frequency of the iodine molecule (I₂) is 215 cm⁻¹, and the anharmonicity constant (x) is 0.003; what, at 300K, is the intensity of the 'hot band' (v = 1 \rightarrow v = 2 transition) relative to that of the fundamental (v = 0 \rightarrow v = 1)?
 - c) How will you prove the occurrence of linkage isomerism in $[Ru(dmso)_6]^{2+}$ (dmso = dimethylsulfoxide) with the help of IR spectroscopy?
 - d) Taking v_{CO} as a probe, how will you monitor the oxidative addition reaction in Vaska compound?
 - e) The symmetrical stretching mode of CO₂ is Infrared inactive but Raman active. Explain.
 - f) Justify the infrared stretching frequencies observed for the following isolectronic species:

 $[Mo(CO)_6]^+$: 2090 cm⁻¹

 $[Cr(CO)_6] : 2000 \text{ cm}^{-1}$

 $[V(CO)_6]^-$: 1858 cm^{-1} $[3+2+2+2+\frac{1}{2}+2]$

[Turn over